DOI QR코드

DOI QR Code

Generation of High Resolution Scenarios for Climate Change Impacts on Water Resources (I): Climate Scenarios on Each Sub-basins

수자원에 대한 기후변화 영향평가를 위한 고해상도 시나리오 생산(I): 유역별 기후시나리오 구축

  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ) ;
  • Jung, Il-Won (Dept. of Civil and Environmental Engrg., Sejong Univ) ;
  • Kwon, Won-Tae (Climate Research Lab., Meteorological Research Institute)
  • 배덕효 (세종대학교 물자원연구소.토목환경공학과) ;
  • 정일원 (세종대학교 토목환경공학과) ;
  • 권원태 (기상연구소 기후연구실)
  • Published : 2007.03.31

Abstract

To evaluate the climate change impacts on water resources, this study generates and analyzes the climate change scenarios for 139 sub-basins in Korea using high resolution ($27km\;{\times}\; 27km$) SHES A2 scenario and LARS-WG. The $27km\;{\times}\; 27km$ high resolution NCAR/PSU MM5 scenario is downscaled from 350km horizontal resolution ECHO-G data. The A2 scenario relatively well reproduced Korean spatial precipitation characteristics, but it underestimated the precipitation over the Han River and the Gum River basins. The LARS-WG was selected and evaluated to overcome the limitation of climate model and to create a highly reliable climate scenario. The results show that the monthly mean minimum and maximum temperature and monthly mean precipitation are within ${\pm}20%$ from the observed mean, and ${\pm}50%$ from the standard deviation that represents the generated data are highly reliable. Moreover, the comparison results between observed data and generated data from LARS-WG show that the latter can reflect the regional climate characteristic very well that can not be simulated from the former.

본 연구에서는 기후변화가 국내 수자원에 미치는 영향을 평가하기 위해 고해상도($27km\;{\times}\;27km$)의 SRES A2 시나리오와 LARS-WG를 이용하여 국내 139개 소유역별 기후시나리오를 생산하였다. 본 연구에서 사용된 고해상도 시나리오는 약 350km 수평해상도의 ECHO-G 자료를 NCAR/PSU MM5를 이용하여 27km 수평해상도로 상세화한 것이다. A2 시나리오는 우리나라의 공간적 강수특성을 비교적 잘 모사하였으나, 한강과 금강유역의 강수량이 적게 모의되는 문제점을 보였다. 이러한 기후모형의 한계를 극복하고 유역스케일의 신뢰성 높은 기후시나리오를 생산하기 위해 일기상발생기인 LARS-WG를 선정하고 국내 기후모의에 대한 적요성을 평가하였다. LARS-WG를 이용한 기후모의 결과 월평균최대.최소기온과 월평균강수량은 관측치에 평균에서는 ${\pm}20%$, 표준편차에서는 ${\pm}50%$ 이내로 기후변화에 따른 수자원 영향평가의 목적으로 적용성이 높다고 판단되었다. 또한 LARS-WG를 이용하여 유역별 시나리오를 생산하고 관측치와 비교한 결과 기후모형에서 모의하지 못하는 지역적인 기후특성을 잘 반영하는 것으로 분석되었다.

Keywords

References

  1. 기상연구소 (2002). 기후변화협약대응 지역기후시나리오 산출기술개발 (I)
  2. 기상연구소 (2003). 기후변화협약대응 지역기후시나리오 산출기술개발 (II)
  3. 기상연구소 (2004). 기후변화협약대응 지역기후시나리오 산출기술개발 (III)
  4. 김병식, 김형수, 서병하, 김남원 (2004). '기후변화가 용담댐 유역의 유출에 미치는 영향', 한국수자원학회논문집, 제37권, 제2호, 한국수자원학회, pp. 185-193 https://doi.org/10.3741/JKWRA.2004.37.3.185
  5. 배덕효, 정일권 (2005). '기후변화에 따른 수자원 영향평가', 방재정보, 제21호, 한국방재협회, pp. 16-22
  6. 안재현, 유철상, 윤용남 (2001). 'GCM 결과를 이용한 지구온난화에 따른 대청댐 유역의 수문환경 변화 분석', 한국수자원학회논문집, 제34권, 제4호, 한국수자원학회, pp. 335-345
  7. 윤용남, 유철상, 이재수 (1998). 지구환경의 변화에 따른 한반도 수문환경의 변화 연구, 한국과학재단
  8. 한국건설기술연구원 (2000). 수자원계획의 최적화 연구(IV) : 기후변화에 따른 수자원 계획의 영향 평가, 건설교통부, 한국수자원공사
  9. 한국환경정책평가연구원 (2004). 기수변화영향평가모형 개발 - 물관리 부문을 중심으로 KEI RE-10, pp. 19
  10. Alcamo, J, Doll, P., Henrichs, T., Kaspar, F., Lehner, B., Rosch, T. and Siebert, S. (2003). 'Global Estimates of Water Withdrawals and Availability under Current and Future 'Business-as-Usual' Conditions', Hydrological Sciences Journal, Vol. 48, No.3, pp. 339-348 https://doi.org/10.1623/hysj.48.3.339.45278
  11. Aernell, N.W. and Reynard, N.S. (1996). 'The Effects of Climate Change due to Global Warming on River Flows in Great Britain', Journal of Hydrology, Vol. 183, pp. 397-424 https://doi.org/10.1016/0022-1694(95)02950-8
  12. Ayers, M.A, Wolock, D.M., McCabe, G.J., Hay, L.E., and Tasker, GD (1994). Sensitiuity qf Water Resources in the Delaware Riuer Basin to Climate Variability and Change, U.S. Geological Survey Water-Supply Paper 2422
  13. BergstriJm, S., Carlsson, B., Gardelin, M., Lindstro m, G., Pettersson, A. and Hummukainen, M. (2001). 'Climate Change Impacts on Runoff in Sweden Assessments by Global Climate Models, Dynamical Downscaling and Hydrological Modelling', Climate Research, Vol. 16, pp. 101 -112 https://doi.org/10.3354/cr016101
  14. Fowler, H.J., Ekstrom, M., Kilsby, C.G. and Jones, P.D. (2005). 'New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate', Journal of Hydrology, Vol. 300, Issues 1-4, pp. 212-233 https://doi.org/10.1016/j.jhydrol.2004.06.017
  15. IPCC (2001a). Climate change 2001: The Scientific Basis, IPCC Contribution of Working Group I to the Third Assessment Report of the Intergouernmental Panel on Climate Change, Cambridge University Press, Cambridge
  16. IPCC (2001b). Climate change 2001: Impacts, Adaptation, and Vulnerability Contribution of Working Group II to the Third Assessment Report of the Intergouernmental Panel on Climate Change, Cambridge University Press, Cambridge
  17. Kwadijk, J., and Middelkoop, H. (1994). 'Estimation of Impact of Climate Change on the Peak Discharge Probability of the River Rhine', Climatic Change, Vol. 27, pp. 199-224 https://doi.org/10.1007/BF01093591
  18. Lettenmaier, D.P., Wood, A.W., Palmer, R.N., Wood, E.F., and Stakhiv, E.Z. (1999). 'Water Resources Implications of Global Warming : A U.S. Regional Perspective', Climate Change, Vol. 43, pp. 537-579 https://doi.org/10.1023/A:1005448007910
  19. Lins, H.F. (1994). 'Increasing U.S. Streamflow Linked to Greenhouse Forcing', EOS, Vol. 75, No. 25, pp. 281-283 https://doi.org/10.1029/94EO00947
  20. Min, S.K., Legutke, S., Hense, A, and Kwon, W.T (2005). 'Internal Variability in a 1000 Year Control Simulation with the Coupled Climate Model ECHO-G. Part l: Near Surface Temperature, Precipitation, and Mean Sea Level Pressure', Tellus, 57A, pp 605-621
  21. Mitosek, H.T. (1995), 'Climate Variability and Change within the Discharge Time Series : A Statistical Approach', Climatic Change, Vol. 29, pp. 101-116 https://doi.org/10.1007/BF01091641
  22. Pilling, C., and Jones, J.A.A (1999). 'High Resolution Climate Change Scenarios: Implications for British runoff', Hydrological Processes, Vol. 13, pp. 2877-2895 https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2877::AID-HYP904>3.0.CO;2-G
  23. Racsko, P., Szeidl, L., and Semenov, M. (1991). 'A Serial Approach to Local Stochastic Weather Models', Ecol. Model, Vol. 57, pp. 27-41 https://doi.org/10.1016/0304-3800(91)90053-4
  24. Richardson, C.W. (1981) 'Stochastic Simulation of Daily Precipitation, Temperature and Solar Radiation', Water Resource Research, Vol. 17, pp. 182-190 https://doi.org/10.1029/WR017i001p00182
  25. Semenov, M.A and Barrmv, E.M. (2002). A Stochastic Weather Generator for Use in Climate Impact Studies: User Manual
  26. Semenov, M.A, Brooks, R.J., Barrow, E.M. and Richardson, C.W. (1998). 'Comparison of the WGEN and LARS-WG Stochastic Weather Generators in Diverse Climates', Climate Research, Vol. 10, pp. 95-107 https://doi.org/10.3354/cr010095
  27. Vogel, R.M., Bell, C.J., and Fennessey, N.M. (1997). 'Climate Streamflow and Water Supply in the Northeastern United States', Journal of Hydrology, Vol. 198, pp 42-68 https://doi.org/10.1016/S0022-1694(96)03327-6
  28. Webster, M., Forest, C, Reilly, J., Babiker, M., Kicklighter, D., Mayer, M., Prinn, R., and Wang, C. (2003). 'Uncertainty Analysis of Climate Change and Policy Response', Climatic Change. Vol. 61, pp. 295-320 https://doi.org/10.1023/B:CLIM.0000004564.09961.9f
  29. Wilby, R.L. (2005). 'Uncertainty in Water Resource Model Parameters Used for Climate Change Impact Assessment', Hydrological Processes, Vol. 19, No. 16, pp. 3201-3219 https://doi.org/10.1002/hyp.5819

Cited by

  1. Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks vol.52, pp.5, 2010, https://doi.org/10.5389/KSAE.2010.52.5.001
  2. Assessment of hydrological changes in a river basin as affected by climate change and water management practices, by using the cat model vol.65, 2016, https://doi.org/10.1002/ird.2044
  3. Watershed Modeling for Assessing Climate Change Impact on Stream Water Quality of Chungju Dam Watershed vol.42, pp.10, 2009, https://doi.org/10.3741/JKWRA.2009.42.10.877
  4. Climate Change Impacts on Paddy Water Requirement vol.53, pp.4, 2011, https://doi.org/10.5389/KSAE.2011.53.4.037
  5. Applicability of Satellite SAR Imagery for Estimating Reservoir Storage vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.007
  6. Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.075
  7. Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.031
  8. Estimation of Paddy Rice Evapotranspiration Considering Climate Change Using LARS-WG vol.51, pp.3, 2009, https://doi.org/10.5389/KSAE.2009.51.3.025
  9. The Impacts of Climate Change on Paddy Water Demand and Unit Duty of Water using High-Resolution Climate Scenarios vol.54, pp.2, 2012, https://doi.org/10.5389/KSAE.2012.54.2.015
  10. Analysis of design water requirement of paddy rice using frequency analysis affected by climate change in South Korea vol.112, 2012, https://doi.org/10.1016/j.agwat.2012.06.002
  11. Outlook of Discharge for Daecheong and Yongdam Dam Watershed Using A1B Climate Change Scenario Based RCM and SWAT Model vol.44, pp.12, 2011, https://doi.org/10.3741/JKWRA.2011.44.12.929
  12. Projection and Analysis of Future Temperature and Precipitation using LARS-WG Downscaling Technique - For 8 Meteorological Stations of South Korea - vol.52, pp.4, 2010, https://doi.org/10.5389/KSAE.2010.52.4.083
  13. Runoff Analysis and Assessment Using Land Surface Model on East Asia vol.45, pp.2, 2012, https://doi.org/10.3741/JKWRA.2012.45.2.165
  14. Effect of Climate Change and Urbanization on Flow and BOD Concentration Duration Curves vol.42, pp.12, 2009, https://doi.org/10.3741/JKWRA.2009.42.12.1091
  15. Analyzing Consumptive Use of Water and Yields of Paddy Rice by Climate Change vol.54, pp.1, 2012, https://doi.org/10.5389/KSAE.2012.54.1.047
  16. Climate Change Impact Analysis of Urban Inundation in Seoul Using High-Resolution Climate Change Scenario vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.345
  17. Climate change impacts on water storage requirements of an agricultural reservoir considering changes in land use and rice growing season in Korea vol.117, 2013, https://doi.org/10.1016/j.agwat.2012.10.023