• Title/Summary/Keyword: precipitation anomaly

Search Result 42, Processing Time 0.028 seconds

A Study on Correlation between El-Nino and Winter Temperature and Precipitation in Korea (엘니뇨와 한국의 겨울 기온 및 강수량과의 상관에 관한 연구)

  • Min, Woo-Ki;Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.151-164
    • /
    • 1998
  • I analyzed the correlation between El-Nino phenomenon and our country's temperature and precipitation laying the stress on the anomaly, and the result of this analysis is as follows: (1) The extraction of the occurrences of El-Nino at the place of sea surface around Nino.3 which was known as the sea area under observation for El-Nino reveals that there are 9 years (1969, 1970, 1973, 1977, 1987, 1992, 1995, 1998) when the temperature anomaly in January is more than 1.0 during the period of research years ($1969{\sim}1998$). (2) The tendency of change of sea surface temperature around Nino.3 and that of our country are about the same, but the anomaly of Pusan and Inchon was much greater than that of Jangki in the East Coast. (3) The anomaly of sea surface temperature around Nino.3 and that of the ground temperature showed the similar changing tendency, the temperature of our country has something to do with that of sea surface as the correlation of ground temperature with the temperature of sea surface showed 0.31. Anomaly warm winter has something to do with El-Nino because the temperature of our country was high when El-Nino phenomenon appeared. (4) As for the precipitation, we can see that it has generally increased after 1989 when the phenomenon of warm climate was intense than before that year. But as we study the change of anomaly, the precipitation has less correlation in comparison with the ground temperature. The precipitation in 1973, 1983 and 1987 which were El-Nino years was correlated with El-Nino. While the change of sea surface temperature has showed a tendency of plus(+)increase since 1990, the precipitation has showed a tendency of minus (-)decrease. Therefore it seems that the temperature of sea surface has little correlation with the amount of rainfall.

  • PDF

An Integrated Artificial Neural Network-based Precipitation Revision Model

  • Li, Tao;Xu, Wenduo;Wang, Li Na;Li, Ningpeng;Ren, Yongjun;Xia, Jinyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1690-1707
    • /
    • 2021
  • Precipitation prediction during flood season has been a key task of climate prediction for a long time. This type of prediction is linked with the national economy and people's livelihood, and is also one of the difficult problems in climatology. At present, there are some precipitation forecast models for the flood season, but there are also some deviations from these models, which makes it difficult to forecast accurately. In this paper, based on the measured precipitation data from the flood season from 1993 to 2019 and the precipitation return data of CWRF, ANN cycle modeling and a weighted integration method is used to correct the CWRF used in today's operational systems. The MAE and TCC of the precipitation forecast in the flood season are used to check the prediction performance of the proposed algorithm model. The results demonstrate a good correction effect for the proposed algorithm. In particular, the MAE error of the new algorithm is reduced by about 50%, while the time correlation TCC is improved by about 40%. Therefore, both the generalization of the correction results and the prediction performance are improved.

A study on the atmospheric response to a SST anomaly over the Equatorial Eastern Pacific Ocean with the horizontally fine resolution AGCM (수평조밀격자 GCM을 이용한 적도 태평양상의 SST anomaly에 대한 대기 반응 연구)

  • Moon, Sung-Eui;Ahn, Joong-Bae;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.403-411
    • /
    • 1995
  • The atmospheric responses to a Sea Surface Temperature Anomaly(SSTA) over the equatorial eastern Pacific Ocean have been investigated using the horizontally fine resolution model based on OSU 2-layer Atmospheric General Circulation Model(AGCM). The SSTAS daring the peak phase of 1982-83 El Nino have been applied to the model as the boundary conditions of the experiment. The model simulates the eastward movement of the rising branch of the Walker circulation. That is, the major features associated with the El Nino such as the increase of the precipitation rate over the center of the Pacific and decrease over the Indonesia, and the 500hPa geopotential height anomaly in the middle latitude are properly describes in the fine resolution model experiment. The model results indicate that this horizontally fine resolution UM can successfully simulate the ENSO anomalies and be more effectivelly used for the study of the climate and the climate changes.

  • PDF

Current and Future Changes in the Type of Wintertime Precipitation in South Korea (현재와 미래 우리나라 겨울철 강수형태 변화)

  • Choi, Gwang-Yong;Kwon, Won-Tae
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.1
    • /
    • pp.1-19
    • /
    • 2008
  • This study intends to clarify the characteristics and causes of current changes in wintertime precipitation in Korea and to predict the future directions based on surface observational $(1973/04\sim2006/07)$ and modeled (GFDL 2.1) climate data. Analyses of surface observation data demonstrate that without changes in the total amount of precipitation, snowfall in winter (November-April) has reduced by 4.3cm/decade over the $1973\sim2007$ period. Moreover, the frequency and intensity of snowfall have decreased; the duration of snow season has shortened; and the snow-to-rain day ratio (STDR) has decreased. These patterns indicate that the type of wintertime precipitation has changed from snow to rain in recent decades. The snow-to-rain change in winter is associated with the increases of air temperature (AT) over South Korea. Analyses of synoptic charts reveal that the warming pattern is associated with the formation of a positive pressure anomaly core over northeast Asia by a hemispheric positive winter Arctic Oscillation (AO) mode. Moreover, the differentiated warming of AT versus sea surface temperature (SST) under the high pressure anomaly core reduces the air-sea temperature gradient, and subsequently it increases the atmospheric stability above oceans, which is associated with less formation of snow cloud. Comparisons of modeled data between torrent $(1981\sim2000)$ and future $(2081\sim2100)$ periods suggest that the intensified warming with larger anthropogenic greenhouse gas emission in the $21^{st}$ century will amplify the magnitude of these changes. More reduction of snow impossible days as well as more abbreviation of snow seasons is predicted in the $21^{st}$ century.

The Development of Ensemble Statistical Prediction Model for Changma Precipitation (장마 강수를 위한 앙상블 통계 예측 모델 개발)

  • Kim, Jin-Yong;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.533-540
    • /
    • 2014
  • Statistical forecast models for the prediction of the summertime Changma precipitation have been developed in this study. As effective predictors for the Changma precipitation, the springtime sea surface temperature (SST) anomalies over the North Atlantic (NA1), the North Pacific (NPC) and the tropical Pacific Ocean (CNINO) has been suggested in Lee and Seo (2013). To further improve the performance of the statistical prediction scheme, we select other potential predictors and construct 2 additional statistical models. The selected predictors are the Northern Indian Ocean (NIO) and the Bering Sea (BS) SST anomalies, and the spring Eurasian snow cover anomaly (EUSC). Then, using the total three statistical prediction models, a simple ensemble-mean prediction is performed. The resulting correlation skill score reaches as high as ~0.90 for the last 21 years, which is ~16% increase in the skill compared to the prediction model by Lee and Seo (2013). The EUSC and BS predictors are related to a strengthening of the Okhotsk high, leading to an enhancement of the Changma front. The NIO predictor induces the cyclonic anomalies to the southwest of the Korean peninsula and southeasterly flows toward the peninsula, giving rise to an increase in the Changma precipitation.

Hydro-meteorological analysis of January 2021 flood event in South Kalimantan Indonesia using atmospheric-hydrologic model

  • Chrysanti, Asrini;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.147-147
    • /
    • 2022
  • In January 2021 heavy flood affected South Kalimantan with causing many casualties. The heavy rainfall is predicted to be generated due to the ENSO (El Nino-Southern Oscillation). The weak La-Nina mode appeared to generate more convective cloud above the warmed ocean and result in extreme rainfall with high anomaly compared to past historical rainfall event. Subsequently, the antecedent soil moisture distribution showed to have an important role in generating the flood response. Saturated flow and infiltration excess mainly contributed to the runoff generation due to the high moisture capacity. The hydro-meteorological processes in this event were deeply analyzed using the coupled atmospheric model of Weather Research and Forecasting (WRF) and the hydrological model extension (WRF-Hydro). The sensitivity analysis of the flood response to the SST anomaly and the soil moisture capacity also compared. Result showed that although SST and soil moisture are the main contributors, soil moisture have more significant contribution to the runoff generation despite of anomaly rainfall occurred. Model performance was validated using the Global Precipitation Measurement (GPM) and Soil Moisture Operational Products System (SMOPS) and performed reasonably well. The model was able to capture the hydro-meteorological process of atmosphere and hydrological feedbacks in the extreme weather event.

  • PDF

Assessment of the Meteorological Characteristics and Statistical Drought Frequency for the Extreme 2017 Spring Drought Event Across South Korea (2017년 극심한 봄 가뭄의 기상학적 특성 및 통계학적 가뭄빈도해석)

  • Bang, Na-Kyoung;Nam, Won-Ho;Hong, Eun-Mi;Michael, J. Hayes;Mark, D. Svoboda
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.37-48
    • /
    • 2018
  • The extreme 2017 spring drought affected a large portion of central and western South Korea, and was one of the most climatologically driest spring seasons over the 1961-2016 period of record. This drought was characterized by exceptionally low precipitation, with total precipitation from January to June being 50% lower than the mean normal precipitation (1981-2010) over most of western South Korea. In this study, for the quantitative drought impact analysis, the widely-used Standardized Precipitation Index (SPI) and the statistical drought frequency are compared with observed meteorological characteristics and anomalies. According to the drought frequency analysis of monthly cumulative precipitation during January and May in 2017, Gyeonggi-do, Chungcheong-do, and Jeollanam-do areas showed more than drought frequency over 100 years. Gyeongsangnam-do area showed more than drought frequency over 200 years based on annual precipitation in 2017. The South Korean government (Ministry of Agriculture, Food and Rural Affairs (MAFRA) and Korea Rural Community Corporation (KRC)) have been operating a government-level drought monitoring system since 2016. Results from this study can be used to improve the drought monitoring applications of future drought events, as well as drought planning and preparedness in South Korea.

A Study of Relation of Winter Climate between El-Nino.La-Nina and Sea Surface Temperature in Korea (한국의 겨울 기후 및 해수 온도에 미치는 엘리뇨와 라니냐의 영향)

  • Bak, Byeong-Su;Min, Woo-Ki
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.143-153
    • /
    • 1999
  • This study is analyzed the correlation between El-Nino and La-Nina and Korea's temperature and precipitation in summer and winter, and the results of this analysis are as follows: (1) The extraction of the occurrences of El-Nino reveals are 5, but La-Nina reveals 6 years. (2) The tendency of change of sea surface temperature around NINO.3 and that of or country are about the same, but the anomaly of Janggi and Pusan was much greater than that of Inchon. (3) The anomaly of sea surface temperature around NINO.3 and that of the temperature showed the similar changing tendency, the temperature of Korea has something to do with that of NINO.3sea surface temperature as the correlation of ground temperature with the temperature of sea surface showed 0.06. Anomaly warm winter has something to do with El-Nino because the temperature of our country was high when El-Nino phenomena appeared. But the precipitation over our country is not significant for La-Nina. (4) Temperature in El-Nino year is lower than normal in summer and higher than normal in winter. But precipitation is more in summer and winter of El-Nino year, but it is not significant of La-Nina year.

  • PDF

Empirical Mode Decomposition (EMD) and Nonstationary Oscillation Resampling (NSOR): II. Applications in Hydrology and Climate sciences

  • Lee, Tae-Sam;Ouarda, TahaB.M.J.;im, Byung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.91-91
    • /
    • 2011
  • In the present study, the proposed EMD and NSOR models has been applied in hydrology and climate sciences. Here, we present those applications as the following: (1) to extend future scenarios of Global Surface Temperature Anomaly including long-term oscillation component; (2) to extend the future evolution of the Eastern Canada winter precipitation; (3) to apply EMD in detecting climate change.

  • PDF

Analysis of Characteristics for 2016 Changma Rainfall (2016년 한반도 장마 강수 특성 분석)

  • Kim, Jin-Yong;Seo, Kyong-Hwan;Yeh, Sang-Wook;Kim, Hyun-Kyung;Yim, So-Young;Lee, Hyun-Soo;Kown, MinHo;Ham, Yoo-Geun
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.277-290
    • /
    • 2017
  • Characteristics of precipitation in South Korea during the 2016 Changma period (6/18~7/30) are analyzed in great details. El $Ni{\tilde{n}}o$-induced tropical Indian Ocean (IO) basin-wide warming lasts from spring to early summer and induces the western North Pacific subtropical high (WNPSH) circulation anomaly through an equatorial Kelvin wave during the 2016 Changma period. Along the northern edge of the WNPSH, strong precipitation occurred, in particular, over eastern China and southern Japan. During the Changma period, South Korea had the near-normal mean precipitation amount (~332 mm). However, about 226 mm of rain fell in South Korea during 1 July to 6 July, which amounts to 67% of total Changma precipitation in that year. Upper-level synoptic migratory lows and low-level moisture transport played an essential role, especially from 1 July to 3 July, in triggering an abrupt development of fronts over the Korean Peninsula and the eastern continent China. The front over the eastern China migrates progressively eastward, which results in heavy rainfall over the Korean peninsula from 1 to 3 July. In contrast, from 4 to 6 July, the typhoon (NEPARTAK) affected an abrupt northward advance of the North Pacific subtropical high (NPSH). The northward extension of the NPSH strengthens the Changma front and induces the southerly flows toward the Korean peninsula, giving rise to an increase in heavy rainfall. The NEPARTAK is generated due to interaction of the Madden-Julian Oscillation (MJO), equatorial Rossby wave and Kelvin waves.