• Title/Summary/Keyword: precipitated silica

Search Result 22, Processing Time 0.035 seconds

Effect of Filler on the Physical Properties of Silicone Rubber Impression Material (실리콘 고무인상재의 물성에 미치는 충전제의 영향)

  • Chung, Kyung-Ho;Kang, Seung-Kyung
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • In this study, the wettability and mechanical properties of silicone rubber impression material were studied by using precipitated silica and fumed silica with different particle size and polarity (hydrophilic/hydrophobic). Curing time of impression material depended on the particle size of fumed silica. The curing time delayed about 9 minutes by using A300, which was the fumed silica with the smallest particle size among the silica used in this study. Wettability of rubber impression material improved with the introduction oi hydrophobic fumed silica(R972). Also, the optimum flow and mechanical properties could be obtained by using blended silica with the 90: 10 ratio of precipitated and fumed silica.

Biaxial Tensile Behaviors of Elastomeric Polymer Networks

  • Shinzo, Kohjiya
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.175-179
    • /
    • 2003
  • For the total description of mechanical behaviors of elastomers, it is necessary to know the so-called rheological constitutive equation i.e. the strain-energy density function (W) in case of elastomers, which necessitates biaxial tensile results of elastic body. This paper first describes the experimental results of biaxial tensile measurements on poly(siloxane) model networks. W was estimated from its differential form i.e. the $1^{st}$ differential of W is stress. The W was found to reproduce the experimental stress-strain results, and the W estimated for silica filled poly(siloxane) networks suggest a different behavior between conventional precipitated silica and in situ formed silica. The difference suggests the different surface property of the two silicas.

Characterisation of Some Silica Samples Modified with Aluminium by Inverse Liquid Chromatography using Squalene as Probe - Part IV

  • Zhang Zhentao;Balard Henri;Donnet J. B.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.107-116
    • /
    • 2005
  • Precipitated silicas modified by aluminium were characterised using inverse liquid chromatography in anhydrous heptane with squalene as probes. Their monolayer capacities of adsorption, Langmuir's and Henry's constants were determined from the desorption isotherms according to frontal analysis. A narrow band consisting of isotherms was observed. The introduction of aluminium has little influence on the monolayer capacity, Langmuir's constants and the Henry constant. Experimental data show that neither the amounts of aluminium on the silica nor the methods of the introduction of aluminium into the silica influence the interactions between the squalene and the silicas.

  • PDF

The Effect of Precipitated Calcium Carbonate Having a Small Particle Size on the Print Quality of an Inkjet-Grade Paper (초미립자탄산칼슘이 잉크제트 인쇄품질에 미치는 영향)

  • Lee Yong-Kyu;Lee Hee-Myung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.2 s.110
    • /
    • pp.38-46
    • /
    • 2005
  • Experimental work was carried out in order to produce a novel grade of ink-jet paper that has both high print-out quality and price competitiveness. Usually, silica and PVOH has been used for ink-jet paper to design the coating layer that has a hydrophilic and micro-porous structure. However, poor rheological characteristics and low productivity of the silica-PVOH system make the price of the ink-jet paper high. The main focus of this study was replacing the conventional silica (coating pigment) PVOH (binder) coating system with the new PCC (coating pigment) cationic starch (binder) coating system, and optimizing thecoating technology associated with PPC-cationic starch system. In this study, ink-jet print quality of PCC-coated papers was compared with that of silica-coated paper. Two types of PCC were used: conventional type and colloid type. It turned out that PCC C, a conventional coating pigment, has not given a desirable result: it showed high dot reproduction, but it gave low optical density. In spite of low dot reproduction, the qualities of PCC A were comparable or superior to those of silica in optical density, color reproduction, and the uniformity of printing surface. It was also shown that the problems that are happened when the dosage level of cationic starch was too low were varied with ink-type used in each printer. However, in the case of low binder level, the produced image was widely spread resulting fromtoo low optical density of images, or from the lack of bonding ability to set ink into coating surface.

Effect of Vinyltriethoxysilane Content on Mechanical and Physical Properties of Precipitated Silica Reinforced Silicone Rubber (비닐트리에톡시실란 함량에 따른 습식실리카로 충전된 실리콘 고무의 기계적 및 물리적 물성)

  • Jin, Sung-Hoon;Hong, Jin-Ho;Kim, Il;Yun, Ju-Ho;Shim, Sang-Eun
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.342-349
    • /
    • 2011
  • The effect of the amount of vinyltriethoxysilane (VTEOS) in precipitated silica filled silicone rubbers was extensively investigated in terms of the change of mechanical properties, heat resistance, oil resistance, compression set, resilience, and curing characteristics. As the content of VTEOS increased from 0 to 2.0 phr, the hardness of the silicone rubber increased, however, tensile strength, elongation at break, and tear strength decreased. From heat resistance test, the change of mechanical properties was pronounced for silicone rubber treated with more VTOES. The best heat resistance was achieved at 2.0 phr VTOES. In addition, oil resistance was proportionally improved with VTEOS content. From oil resistance test. it was found that the decrease in hardness and maximum elongation was reduced for VTEOS-added systems. Finally, resilience, compression set, degree of cure and crosslink density were significantly enhanced with the amount of VTEOS.

Zinc Surfactant Effects on Nr/Tespd/Silica and SBR/Tespd/Silica Compounds

  • Kim, Kwang-Jea;Vanderkooi, John
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.263-273
    • /
    • 2004
  • The effects of zinc surfactant (ZB) on the bis(triethoxysilylpropyl)disulfide (TESPD)-silica mixture in natural rubber (NR) and solution butadiene-co-styrene rubber(S-SBR) were compared with respect to their rheological property, processability, physical properties, and silica dispersion. In the NR compound, addition of the ZB increased the reversion resistance time (T-2), the tensile modulus, and the BO time; however, lowered the viscosity, the HBU, and tans values. In the S-SBR copound, addition of the ZB increased the $tan{\delta}$ values while lowered the T-2, the tensile modulus the BO time, the viscosity, and the HBU of the compound. In the NR compounds, addition of the ZB significantly increased the processability and mechanical property. However, in the S-SBR compounds, it improved the processability the mechanical property was not improved.

Preparation and Opticaa Properties of CuCl Nanocrystallites Dispersed Nonlinear Optical Glass by Sol-Gel Process (솔-젤법에 의한 CuCl 미세결정이 분산된 비선형 광학유리의 제조 및 광특성)

  • 송석표;한원택;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.941-948
    • /
    • 1997
  • CuCl nanocrystallites dispersed nonlinear optical silica and borosilicate glasses were fabricated by sol-gel process. CuCl powder was dissolved in TEOS(Si(OC2H5)4) and TMB((CH3O)3B), precursors of silica and borosilicate glasses, with ethanol, water and HCl, and precipitated through the heat treatment in the matrix glass. The optical properties of CuCl doped glasses were measured using the spectrophotometer at room temperature and low temperature(77K); Z1, 2 and Z3 exciton peaks from the absorption spectra, were observed at about 370 nm and 380 nm, respectively. The average radius of nanocrystallites, calculated from the blue shift of Z3 excitons, was measured according to annealing temperature and time. The precipitation temperature of CuCl nanocrystallites was decreased when boron was added to silica glass. Increase of annealing temperature and time made average radius of nanocrystallites saturated about 2 nm.

  • PDF

Electrical and Mechanical Properties of Silicone Rubber for High Voltage Insulation (고압절연용 실리콘고무의 전기특성 및 물성에 관한 연구)

  • Lee, J.H.;Ji, W.Y.
    • Elastomers and Composites
    • /
    • v.37 no.2
    • /
    • pp.115-123
    • /
    • 2002
  • This study was carried out to investigate the influences or the vinyl content of polydimethylsiloxane(PDMS) and type of silica on the electrical and mechanical properties of silicone rubber far high voltage insulation. When the content of vinyl group was increased, cross-linking density and hardness were increased, and tensile strength, volume resistivity and tracking resistance were improved. The mechanical and electrical properties of silicone rubber reinforced with fumed silica were higher than those of silicone rubber reinforced with precipitated silica. It was found that the electrical and mechanical properties of silicone rubber were influenced greatly by the water contents of silica.

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.