• Title/Summary/Keyword: precast box culvert

Search Result 7, Processing Time 0.02 seconds

Behavior of Precast Concrete Box Culvert Using Expansive Cement (팽창시멘트를 이용한 프리캐스트 콘크리트 박스 암거의 거동에 관한 연구)

  • Jo, Byung-Wan;Tae, Ghi-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.159-169
    • /
    • 2002
  • This study is intended to discuss the application of expansive additives for concrete to improve the durability of precast concrete box culvert by inducing the chemical prestress. The precast concrete box culvert using expansive cement are tested to verify the effect of expansive additives. The results show that the initial cracking load and yielding load of the expansive cement numbers are increased when they are compared with those of the normal concrete. In the prototype precast concrete box culvert experiment, initial crack control effect and strength of joint are increased, but the deflection is decreased by expansive cement. Brides, reinforcement ratio is decreased about 14.6 percent in compering with the case of using normal cement. If can be the concluded that the use of expansive additives to induce the chemical prestress was improve the durability in concrete box culvert.

A Study on Flexural Behavior of Precast Box Culvert with Blast Slag (고로슬래그 미분말을 혼입한 프리캐스트 박스 암거의 휨 강도에 관한 연구)

  • Tae, Ghi-Ho;Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, the effect of blast furnace slag on precast concrete culvert was assessed by measuring the flexural strength using to full scaled box culvert. As a result, the initial cracking load and yield load of reinforced concrete box converts are increased in comparison with those of the normal concrete box culvert, but the ultimate load is decreased slightly. It can be concluded that use of blast furnace slag induce to flexural strength in precast concrete box culvert greatly improved the serviceability.

A Study on the Flexural Experment of Precast Culvert with Slag (슬래그 미분말을 혼입한 프리캐스트 암거의 휨실험에 관한 연구)

  • Tae, Ghi-Ho;Jeon, Jung-Khu;Jang, Suk-Woo;Koak, Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.522-525
    • /
    • 2006
  • This study is intended to discuss the application of blast slag for concrete to improve the durability of precast concrete box culvert. The precast concrete box culverts with blast slag are tested to verify the effect of early strength. The results show that the initial cracking load and yielding load of the blast slag concrete members are increased when they are compared with those of the normal concrete. In the prototype precast concrete box culvert experiment, initial crack control effect and ductility index are increased. It can be concluded that the use of blast slag was improved the durability in precast concrete box culvert.

  • PDF

Chemically Prestressed Precast Concrete Box Culvert with Expansive Additives

  • Park, Hong-Yong;Kim, Chul-Young;Park, Ik-Chang;Bae, Sang-Wook;Ryu, Jong-Hyun
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Although portland cement concrete is one of the most universal construction materials, it has some disadvantage such as shrinkage, which is an inherent characteristic. Because of this shrinkage, combined with the low tensile strength of the material, cracks of varying sizes can be found in every reinforced concrete. To prevent this cracking, keeping the concrete in compression by mechanical prestress has been used. This study discusses application of expansive additives for concrete to improve the serviceability of precast concrete box culvert by inducing chemical prestress. For this purpose, both expansive concrete slabs and normal concrete slabs are tested to verify the effect of expansive additives. Then the failure tests of the fullscale precast box culverts were carried out and the critical aspects of the structural behavior were investigated. The result of the material testis shows that the optimal proportion of expansive additives is 13 percent of cement weight, and the properties of expansive concrete are the same as those of normal concrete in that proportion. Both the experimental cracking load and service load of the expansive concrete members are increased in comparison with those of the normal concrete, but the ultimate load is decreased slightly. In addition to the above results, the deformation of expansive concrete member is lets than that of normal concrete member, and permanent strain which results from cyclic load is decreased. It can be concluded that the use of expansive additives to induce chemical prestress in precast concrete box culvert greatly improves the serviceability.

  • PDF

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

A Study on the Performance Evaluation of Precast Concrete Box Culvert with Blast Furnace Slag (고로슬래그를 이용한 프리캐스트 콘크리트 박스암거의 성능평가에 관한 연구)

  • Kim, Doo Hwan;Jung, Jun Young;Kim, Sung Pil;An, Man Bok;Tae, Gi Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.157-157
    • /
    • 2011
  • 프리캐스트 콘크리트 박스 암거는 현장 타설식 암거에 비해 구조물의 고품질화 및 반복적인 대량생산으로 원가 절감과 건식화 시공으로 인한 공정의 단순화와 공기가 단축되는 이점을 지니고 있다. 따라서 본 연구는 상재 허용하중을 확보하고, 시공성 및 내구성이 뛰어나며, 경제성을 고려한 고성능 프리캐스트 박스 암거를 개발하고 향후 고성능 프리캐스트 박스 암거를 생산하기 위한 기초적인 자료를 제시하고자 하였다. 본 연구에서는 기존의 보통 포틀랜드 시멘트를 이용한 프리캐스트 박스 암거의 경제성 및 내구성, 강도특성을 개선하고자 고로슬래그를 이용하여 최적의 배합비를 산출하고, 이를 토대로 중성화, 염해, 동결융해 등의 시험을 통해 내구성을 확보하고, 휨 성능을 확인하고자 실물박스암거를 제작하여 외압강도시험을 실시하였다. 또한 구조해석을 통해 응력검토를 하였다. 내구성 검토 결과, 분말도 $6,000cm^2/g$을 가진 고로슬래그 미분말을 50%로 혼입한 콘크리트가 보통 포틀랜드 시멘트를 사용한 콘크리트보다 염화물이온 투과성에 대한 저항성 및 동결융해 저항성 등 기초물성 및 내구성이 개선됨을 알 수 있었다. 박스암거에 대한 휨 시험 결과, OPC에 비해 GFSC6의 경우는 크게 구조적 성능이 떨어지지는 않는 것으로 나타났으며, 균열양상 및 연성도에서는 우수함을 나타냈다. ABAQUS에 의한 비선형 해석 결과는 시험체의 휨 거동을 잘 묘사하는 것으로 나타났으며, 처짐의 경우 시험체의 시험결과보다 크게 나타났지만, 처짐 양상은 비슷한 것을 알 수 있었고, 벽체와 상부 슬래브에 발생하는 응력은 부재가 허용하는 균열응력값 이내로 나타남에 따라 사용하중 상태에서의 응력검토는 안전한 것으로 판단된다.

  • PDF