• 제목/요약/키워드: preS2 epitope

검색결과 5건 처리시간 0.022초

Epitope Tagging with a Peptide Derived from the preS2 Region of Hepatitis B Virus Surface Antigen

  • Kang, Hyun-Ah;Yi, Gwan-Su;Yu, Myeong-Hee
    • BMB Reports
    • /
    • 제28권4호
    • /
    • pp.353-358
    • /
    • 1995
  • Epitope tagging is the process of fusing a set of amino acid residues that are recognized as an antigenic determinant to a protein of interest. Tagging a protein with an epitope facilitates various immunochemical analyses of the tagged protein with a specific monoclonal antibody. The monoclonal antibody H8 has subtype specificity for an epitope derived from the preS2 region of hepatitis B virus surface antigen. Previous studies on serial deletions of the preS2 region indicated that the preS2 epitope was located in amino acid residues 130~142. To test whether the amino acid sequence in this interval is sufficient to confer on proteins the antigenicity recognizable by the antibody H8, the set of amino acid residues in the interval was tagged to the amino terminal of ${\beta}$-galactosidase and to the carboxyl terminal of the truncated $p56^{lck}$ fragment. The tagged ${\beta}$-galactosidase, expressed in Escherichia coli, maintained the enzymatic activity and was immunoprecipitated efficiently with H8. The tagged $p56^{lck}$ fragment, synthesized in an in vitro translation system, was also immunoprecipitated specifically with H8. These results demonstrate that the amino acid sequence of the preS2 region can be used efficiently for the epitope tagging approach.

  • PDF

B형 간염바이러스 표면항원 preS2 부위의 항원결정인자 규명 (Antigenic Determinant Mapping in preS2 Region of Hepatitis B Surface Antigen)

  • 권기선;김창수;박주상;한문희;유명희
    • 미생물학회지
    • /
    • 제28권1호
    • /
    • pp.13-18
    • /
    • 1990
  • adr아형 B형 간염바이러스의 preS2유전자 부위를lacZ 유전자의 5말단에 연결하여 preS2-$\beta$-galactosidase 융합단백질을 생성하는 플라스미드, pTSZ를 건설하였다. 갈본된 preS2 유전자의 3' 및 5발단을 결손시켜 얻은 재조합 플라스미드를 발현시킨 후 결손된 preS2를 포함하는 융합단백질의 항원성을 단일클론항체 H8을 사용하여 비교하며 보았다. 양말단에서 일정부위까지의 결손은 항원성에 영향을 미치지 않았지만 그 이상의 결손에 의하여는 항윈성이 소실됨을 볼 수 있었다. 이상의 항원성 전한부위를 DNA 염기서열 분석에 의하여 결정할 수 있었다. 그 결과 항원결정인자의 양말단은 preS2 서열 중 아미노산 전기 130-132와 140→142 사이에 각각 존재함을 알 수 있었고, 아미노산 143번의 결손은 항원성의 부분적인 감소를 초래하는 것으로 보아 항원성 결정에 보충적 역할을 한다고 생각된다. 한편 adr과 adw2아형 간의 아미노산서열의 차이가 항원결정부위 중 130, 132 및 141번 위치에 존재하며 단일를론항체 H8이 adr아형에만 특이하게 결합하는 것으로 부터, 세 잔기 중 하나 혹은 그 이상이 아형특이성에 관여한다고 추정된다.

  • PDF

JY-Pol 접합백신으로 유도된 항페렴구균 항체의 보호효과 (Antibody Induced by the JY-Pol Pneumococcal Conjugate Protects Mice Against systemic Infection Due to Streptococcus pneumoniae)

  • 이주희;한용문
    • 약학회지
    • /
    • 제48권6호
    • /
    • pp.369-373
    • /
    • 2004
  • We previously reported that Streptococcus pneumoniae capsule attached to the surface protein (JY-Pol) was protective to systemic pneumococcal infection. The JY -Pol antigen induced IgM, IgG, and IgA in mice and provoked cell-mediated immunity. In this current study, we investigated the effect of anti JY-Pol antiserun and monoclonal antibody C2 (Mab C2) specific for the JY-Pol antigen against the pneumococcal disease. Mice that were given the antiserum survived longer than mice that received antiserum pre-absorbed with S.pneumoniae cells or DPBS as a negative control. Heat-treated anti JY-Pol antiserum resulted in survival rates similar to intact fresh JY-Pol antiserum. Mab C2 isolated from JY-Pol-immunized mice also enhanced resistance of naive mice against the pneumococcal diseaser. This protection by Mab C2 appeared to be mediated by opsonization as determined in a RAW 264.7 monocyte/macrophage cell line. Epitope analysis showed that Mab C2 epitope consisted of glucuronic acid and glucose that blocked the interaction of JY-Pol to the C2. Taken together, these data indicate that the antiserum induced by the JY-Pol, a naturally pneumococcal conjugate formula, mediated the protection by passive transfer, which was confirmed by protective effect of Mab C2.

Visualization of Hepatitis B Virus (HBV) Surface Protein Binding to HepG2 Cells

  • Lee, Dong-Gun;Park, Jung-Hyun;Choi, Eun-A;Han, Mi-Young;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • 제29권2호
    • /
    • pp.175-179
    • /
    • 1996
  • Viral surface proteins are known to play an essential role in attachment of the virus particle to the host cell membrane. In case of the hepatitis B virus (HBV) several reports have described potential receptors on the target cell side, but no definite receptor protein has been isolated yet. As for the viral side, it has been suggested that the preS region of the envelope protein, especially the preS1 region, is involved in binding of HBV to the host cell. In this study, preS1 region was recombinantly expressed in the form of a maltose binding protein (MBP) fusion protein and used to identify and visualize the expression of putative HBV receptor(s) on the host cell. Using laser scanned confocal microscopy and by FACS analysis, MBP-preS1 proteins were shown to bind to the human hepatoma cell line HepG2 in a receptor-ligand specific manner. The binding kinetic of MBP-preS1 to its cellular receptor was shown to be temperature and time dependent. In cells permeabilized with Triton X-100 and treated with the fusion protein, a specific staining of the nuclear membrane could be observed. To determine the precise location of the receptor binding site within the preS1 region, several short overlapping peptides from this region were synthesized and used in a competition assay. In this way the receptor binding epitope in preS1 was revealed to be amino acid residues 27 to 51, which is in agreement with previous reports. These results confirm the significance of the preS1 region in virus attachment in general, and suggest an internalization pathway mediated by direct attachment of the viral particle to the target cell membrane.

  • PDF

Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan;Cheong, Ki-Young;Shin, Woo-Seok;Hong, Sung-Youl;Woo, Hee-Jong;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권10호
    • /
    • pp.1529-1536
    • /
    • 2006
  • We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.