Proceedings of the Korea Information Processing Society Conference
/
2021.11a
/
pp.626-628
/
2021
사건 관계 추출 태스크는 구조화되지 않은 텍스트 데이터에서 사건의 구조화된 표현을 얻는 것이다. 하나의 문장에서도 많은 정보를 얻을 수 있는 중요한 태스크임에도 불구하고, 다양한 사전 학습 모델을 적용한 연구는 아직 활발하게 연구되지 않고 있다. 따라서 본 연구에서 사전 학습된 모델의 임베딩 기법 중 BERT, RoBERTa, SpanBERT에 각각 base, large 아키텍처를 적용하여 실험하였다. 사건을 식별하기 위한 trigger와 해당 trigger의 세부 argument를 식별하기 위한 분류기를 상위레이어로 각각 설계하였고, 다양한 배치 크기를 적용하여 실험하였다. 성능평가는 trigger/argument 각각 F1 score를 적용하였고, 결과는 RoBERTa large 모델에서 좋은 성능을 보인 것을 확인하였다.
Young Hyun Yoo;Kyumin Lee;Minjin Jeon;Jii Cha;Kangsan Kim;Taeuk Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.360-365
/
2022
문장 표현(sentence representation)은 자연어처리 분야 내의 다양한 문제 해결 및 응용 개발에 있어 유용하게 활용될 수 있는 주요한 도구 중 하나이다. 하지만 최근 널리 도입되고 있는 사전 학습 언어 모델(pre-trained language model)로부터 도출한 문장 표현은 이방성(anisotropy)이 뚜렷한 등 그 고유의 특성으로 인해 문장 유사도(Semantic Textual Similarity; STS) 측정과 같은 태스크에서 기대 이하의 성능을 보이는 것으로 알려져 있다. 이러한 문제를 해결하기 위해 대조 학습(contrastive learning)을 사전 학습 언어 모델에 적용하는 연구가 문헌에서 활발히 진행되어 왔으며, 그중에서도 레이블이 없는 데이터를 활용하는 비지도 대조 학습 방법이 주목을 받고 있다. 하지만 대다수의 기존 연구들은 주로 영어 문장 표현 개선에 집중하였으며, 이에 대응되는 한국어 문장 표현에 관한 연구는 상대적으로 부족한 실정이다. 이에 본 논문에서는 대표적인 비지도 대조 학습 방법(ConSERT, SimCSE)을 다양한 한국어 사전 학습 언어 모델(KoBERT, KR-BERT, KLUE-BERT)에 적용하여 문장 유사도 태스크(KorSTS, KLUE-STS)에 대해 평가하였다. 그 결과, 한국어의 경우에도 일반적으로 영어의 경우와 유사한 경향성을 보이는 것을 확인하였으며, 이에 더하여 다음과 같은 새로운 사실을 관측하였다. 첫째, 사용한 비지도 대조 학습 방법 모두에서 KLUE-BERT가 KoBERT, KR-BERT보다 더 안정적이고 나은 성능을 보였다. 둘째, ConSERT에서 소개하는 여러 데이터 증강 방법 중 token shuffling 방법이 전반적으로 높은 성능을 보였다. 셋째, 두 가지 비지도 대조 학습 방법 모두 검증 데이터로 활용한 KLUE-STS 학습 데이터에 대해 성능이 과적합되는 현상을 발견하였다. 결론적으로, 본 연구에서는 한국어 문장 표현 또한 영어의 경우와 마찬가지로 비지도 대조 학습의 적용을 통해 그 성능을 개선할 수 있음을 검증하였으며, 이와 같은 결과가 향후 한국어 문장 표현 연구 발전에 초석이 되기를 기대한다.
Yeonji Jang;Fei Li;Yejee Kang;Hyerin Kang;Seoyoon Park;Hansaem Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.238-244
/
2022
감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.4
/
pp.693-700
/
2023
Sentiment analysis, a branch of natural language processing that classifies and identifies subjective opinions and emotions in text documents as positive or negative, can be used for various promotions and services through customer preference analysis. To this end, recent research has been conducted utilizing various techniques in machine learning and deep learning. In this study, we propose an optimal language model by comparing the accuracy of sentiment analysis for movie, product, and game reviews using existing RNN-based models and recent Transformer-based language models. In our experiments, LMKorBERT and GPT3 showed relatively good accuracy among the models pre-trained on the Korean corpus.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.706-708
/
2023
In this study, we embark on a journey to uncover the essence of emotions by exploring the depths of transfer learning on three pre-trained transformer models. Our quest to classify five emotions culminates in discovering the KLUE (Korean Language Understanding Evaluation)-BERT (Bidirectional Encoder Representations from Transformers) model, which is the most exceptional among its peers. Our analysis of F1 scores attests to its superior learning and generalization abilities on the experimental data. To delve deeper into the mystery behind its success, we employ the powerful SHAP (Shapley Additive Explanations) method to unravel the intricacies of the KLUE-BERT model. The findings of our investigation are presented with a mesmerizing text plot visualization, which serves as a window into the model's soul. This approach enables us to grasp the impact of individual tokens on emotion classification and provides irrefutable, visually appealing evidence to support the predictions of the KLUE-BERT model.
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.43-50
/
2024
This paper evaluates the Korean sentiment analysis performance of large language models like GPT-3.5 and GPT-4 using a zero-shot approach facilitated by the ChatGPT API, comparing them to pre-trained Korean models such as KoBERT. Through experiments utilizing various Korean sentiment analysis datasets in fields like movies, gaming, and shopping, the efficiency of these models is validated. The results reveal that the LMKor-ELECTRA model displayed the highest performance based on F1-score, while GPT-4 particularly achieved high accuracy and F1-scores in movie and shopping datasets. This indicates that large language models can perform effectively in Korean sentiment analysis without prior training on specific datasets, suggesting their potential in zero-shot learning. However, relatively lower performance in some datasets highlights the limitations of the zero-shot based methodology. This study explores the feasibility of using large language models for Korean sentiment analysis, providing significant implications for future research in this area.
This research investigates training methods for large language models to accurately identify sentiments and comprehend information about increasing and decreasing fluctuations in the financial domain. The main goal is to identify suitable datasets that enable these models to effectively understand expressions related to financial increases and decreases. For this purpose, we selected sentences from Wall Street Journal that included relevant financial terms and sentences generated by GPT-3.5-turbo-1106 for post-training. We assessed the impact of these datasets on language model performance using Financial PhraseBank, a benchmark dataset for financial sentiment analysis. Our findings demonstrate that post-training FinBERT, a model specialized in finance, outperformed the similarly post-trained BERT, a general domain model. Moreover, post-training with actual financial news proved to be more effective than using generated sentences, though in scenarios requiring higher generalization, models trained on generated sentences performed better. This suggests that aligning the model's domain with the domain of the area intended for improvement and choosing the right dataset are crucial for enhancing a language model's understanding and sentiment prediction accuracy. These results offer a methodology for optimizing language model performance in financial sentiment analysis tasks and suggest future research directions for more nuanced language understanding and sentiment analysis in finance. This research provides valuable insights not only for the financial sector but also for language model training across various domains.
Boussougou, Milandu Keith Moussavou;Park, Dong-Joo
KIPS Transactions on Software and Data Engineering
/
v.11
no.10
/
pp.437-446
/
2022
Text classification task from Natural Language Processing (NLP) combined with state-of-the-art (SOTA) Machine Learning (ML) and Deep Learning (DL) algorithms as the core engine is widely used to detect and classify voice phishing call transcripts. While numerous studies on the classification of voice phishing call transcripts are being conducted and demonstrated good performances, with the increase of non-face-to-face financial transactions, there is still the need for improvement using the latest NLP technologies. This paper conducts a benchmarking of Korean voice phishing detection performances of the pre-trained Korean language model KoBERT, against multiple other SOTA algorithms based on the classification of related transcripts from the labeled Korean voice phishing dataset called KorCCVi. The results of the experiments reveal that the classification accuracy on a test set of the KoBERT model outperforms the performances of all other models with an accuracy score of 99.60%.
Seong-Gun Yun;Hyeok-Chan Kwon;Eunju Park;Young-Bok Cho
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.79-87
/
2024
This study aims to improve communication for people with hearing impairments by developing artificial intelligence models that recognize and classify emotions from voice data. To achieve this, we utilized three major AI models: CNN-Transformer, HuBERT-Transformer, and Wav2Vec 2.0, to analyze users' voices in real-time and classify their emotions. To effectively extract features from voice data, we applied transformation techniques such as Mel-Frequency Cepstral Coefficient (MFCC), aiming to accurately capture the complex characteristics and subtle changes in emotions within the voice. Experimental results showed that the HuBERT-Transformer model demonstrated the highest accuracy, proving the effectiveness of combining pre-trained models and complex learning structures in the field of voice-based emotion recognition. This research presents the potential for advancements in emotion recognition technology using voice data and seeks new ways to improve communication and interaction for individuals with hearing impairments, marking its significance.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.395-398
/
2021
최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.