• Title/Summary/Keyword: pre-reinforcement

Search Result 191, Processing Time 0.025 seconds

Behavior of a tunnel face reinforced with longitudinal pipes - laboratory investigation (실내실험에 의한 수평보강재로 보강된 터널막장의 거동)

  • Yoo, Chung-Sik;Yang, Ki-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.91-100
    • /
    • 2002
  • This paper presents the results of laboratory investigation on the deformation behavior of tunnel face reinforced with longitudinal pipes. A series of reduced-scale model tests was carried out to investigate the effect of reinforcement layout on the tunnel face axial displacement as well as the surface settlement. Among other things, the results of the model tests indicate that the axial displacement of tunnel face as well as the ground surface settlement can significantly be reduced by pre-reinforcing the tunnel face with longitudinal pipes, suggesting that the pre-reinforcing technique may effectively be used as a positive ground control method in the urban environments. Also illustrated is that the reinforcing effect is significantly influenced by the reinforcement layout. The implications of the findings from this study are discussed in a great detail.

  • PDF

Numerical Analysis of Geosynthetics-Reinforced Soil Structure with Pre-stress (프리스트레스 방법을 적용한 토목섬유 보강토 구조물의 수치해석)

  • Kim, Eun-Ra;Kim, You-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.21-33
    • /
    • 2005
  • This paper presented a mechanism of the soil structure reinforced by geosynthetics, in which the reinforcing mechanism is treated as the effect arising from the reinforcement process to prevent the dilative deformation of soil under shearing. A full-scale in-situ model test was carried out by introducing the prestress method to enhance the geosynthetic-reinforcement, and the prestress effect through the FEM is also examined. The elasto-plastic model and the initial parameters needed in the FEM are presented. Moreover, the theoretical prediction is compared with the experimental results, which were obtained by a full-scale in-situ model test.

  • PDF

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

The Impacts of Communication Reinforcement on Performance of Learning in Web-PBL (Web-PBL환경에서 커뮤니케이션 강화가 학습성과에 미치는 영향)

  • Ko, Yun-Jung;Kang, Ju-Seon;Ko, Il-Sang
    • Asia pacific journal of information systems
    • /
    • v.16 no.4
    • /
    • pp.179-202
    • /
    • 2006
  • The objective of this study is to identify the impacts of communication reinforcement on performance of learning in Web-PBL. Communication reinforcement is defined as the combination of information sharing and co-construction. As factors facilitating communication reinforcement, we propose learner's characteristics, task characteristics, and group characteristics. Learner's characteristics are collaboration-orientation, openness, holistic approach, and online community-orientation which reflects e-learning environment. Collaboration-oriented tasks as group projects were developed and given to groups with 5-6 members. The group characteristics are categorized into 'horizontal' and 'vertical', according to the patterns of communication between a group leader and members. To verify empirically the proposed research model, an experimental design was performed to learners who took on-line and off-line courses with group projects. We found important results as follows; First, field dependence has positive impacts on information sharing, and online community-orientation has positive impacts on co-construction. These results correspond with prior studies on relationship between field dependence and collaborative learning. Second, collaboration-oriented task directly impacts on information sharing, and indirectly affects co-construction, This result implicates that information sharing is pre-requisite of co-construction. Third, 'horizontal' was identified as a factor giving positive effects on information sharing and co-construction. This result implies that horizontal communication is very important to facilitate communication reinforcement.

The effects of the face reinforcement at shallow tunnels in fractured rock masses (파쇄대 암반에서 얕은 심도의 터널 굴착시 막장보강효과에 관한 연구)

  • Nam, Kee-Chun;Heo, Young;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.323-336
    • /
    • 2003
  • Recently, the development of tunnel reinforcement method has been required relating to the shallow tunnelling in soft ground. In this study, the improvement method on tunnel stability is proposed by evaluating the efficiency of face reinforcement which enables to control extrusion of advance core, however, it is often neglected in urban tunnelling under the poor ground conditions. Systematic pre-confinement ahead of the face improves the tunnel stability, subsequently, displacement of the crown and surface settlement can be restrained by proper method. 3-dimensional numerical analysis including horizontal reinforcement modelling on a face is applied to estimate the behaviour of a tunnel in relation to the ground and reinforcement conditions. Consequently, extrusion at the face decreases significantly after using the horizontal reinforcement and the effect of reinforcement is much increased in case of applying the supplemental reinforcement ahead of the face together. Especially, confinement effect around the tunnel and the core is proved by means of the core reinforcement in poor ground conditions.

  • PDF

Pre-reinforcing Grouting a Sand Gravel Layer for Tunnelling (모래자갈층에서 터널시공을 위한 굴착 전 그라우팅 보강 사례)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.466-474
    • /
    • 2016
  • Pre-reinforcement with umbrella arch grouting is conducted around a tunnel where a portion of the upper part of the tunnel is located in a sand and gravel layer. Surroundings of a first tunnel situated below groundwater table are reinforced with LW or SSM that is composed of ultra-fine cement and injected into multi-stages through large diameter steel pipes. With them, a first tunnel is safely excavated without both leaking of groundwater and fallings of sand and gravel from the arch. A second tunnel where groundwater is drained down to the bedrock is reinforced with jet grouting. The effect of the pre-grouting reinforcement is monitored by checking whether groundwater is dripping or sand or gravel is falling from the arch of the tunnels.

Fabrication and AE Characteristics of TiNi/ A16061 Shape Memory Alloy Composite

  • Park, Young-Chul;Lee, Jin-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.453-459
    • /
    • 2004
  • TiNi/ Al6061 shape memory alloy (SMA) composite was fabricated by hot press method to investigate the microstructure and mechanical properties. Interface bonding between TiNi reinforcement and A1 matrix was observed by using SEM and EDS. Pre-strain was imposed to generate compressive residual stress inside composite. A tensile test for specimen, which under-went pre-strain, was performed at high temperature to evaluate the variation of strength and the effect of pre-strain. It was shown that interfacial reactions occurred at the bonding between matrix and fiber, creating two inter-metallic layers. And yield stress increased with the amount of pre-strain. Acoustic Emission technique was also used to nondestructively clarify the microscopic damage behavior at high temperature and the effect of pre-strain of TiNi/ Al6061 SMA composite.

BIM based Data Exchange System of Welded Wire/bar Mat for Pre-fab RC Members (BIM 기반 프리패브 부재의 용접철근매트 정보교환 시스템)

  • Jung, Jae-Hwan;Kim, Do-Hyeong;Kim, Hyun-Gi
    • Journal of KIBIM
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Reinforcing bars, a major component of the pre-fab structure, adheres to the existing on-site assembly method and attempts to develop and commercialize the technology of the pre-assembly method, but the effect is insignificant. Welded Wire / Bar Mat (WBM) has various advantages such as commercialization of rebar through machine manufacturing to improve workability, but it is different from the existing design and the construction method is different from the previous one. Therefore, to maximize the advantages of WBM and improve productivity, manufacturing, transportation, and construction from the design stage should be considered based on BIM from the initial design stage. In this paper, the concept of the design support system for the WBM was established based on the use of BIM in concrete reinforcement and the preliminary research on the WBM. WBM conversion design was performed for the existing prefabricated members, and based on this, the exchange format and system of the master prefabricated model with the WBM design data were set up. As a result of the pilot test, it was found that the traditional reinforcing bar information extracted from the master prefab model has transmitted 100% accurately. As for the WBM information, 100% of the information on the straight reinforcement was transmitted and represented, and the information on the bent reinforcement was found to have a 90% recall in the master BIM tool.

Path Planning for a Robot Manipulator based on Probabilistic Roadmap and Reinforcement Learning

  • Park, Jung-Jun;Kim, Ji-Hun;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.674-680
    • /
    • 2007
  • The probabilistic roadmap (PRM) method, which is a popular path planning scheme, for a manipulator, can find a collision-free path by connecting the start and goal poses through a roadmap constructed by drawing random nodes in the free configuration space. PRM exhibits robust performance for static environments, but its performance is poor for dynamic environments. On the other hand, reinforcement learning, a behavior-based control technique, can deal with uncertainties in the environment. The reinforcement learning agent can establish a policy that maximizes the sum of rewards by selecting the optimal actions in any state through iterative interactions with the environment. In this paper, we propose efficient real-time path planning by combining PRM and reinforcement learning to deal with uncertain dynamic environments and similar environments. A series of experiments demonstrate that the proposed hybrid path planner can generate a collision-free path even for dynamic environments in which objects block the pre-planned global path. It is also shown that the hybrid path planner can adapt to the similar, previously learned environments without significant additional learning.

Digital Twin and Visual Object Tracking using Deep Reinforcement Learning (심층 강화학습을 이용한 디지털트윈 및 시각적 객체 추적)

  • Park, Jin Hyeok;Farkhodov, Khurshedjon;Choi, Piljoo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.145-156
    • /
    • 2022
  • Nowadays, the complexity of object tracking models among hardware applications has become a more in-demand duty to complete in various indeterminable environment tracking situations with multifunctional algorithm skills. In this paper, we propose a virtual city environment using AirSim (Aerial Informatics and Robotics Simulation - AirSim, CityEnvironment) and use the DQN (Deep Q-Learning) model of deep reinforcement learning model in the virtual environment. The proposed object tracking DQN network observes the environment using a deep reinforcement learning model that receives continuous images taken by a virtual environment simulation system as input to control the operation of a virtual drone. The deep reinforcement learning model is pre-trained using various existing continuous image sets. Since the existing various continuous image sets are image data of real environments and objects, it is implemented in 3D to track virtual environments and moving objects in them.