• Title/Summary/Keyword: pre-reinforcement

Search Result 191, Processing Time 0.023 seconds

A new dynamic construction procedure for deep weak rock tunnels considering pre-reinforcement and flexible primary support

  • Jian Zhou;Mingjie Ma;Luheng Li;Yang Ding;Xinan Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.319-334
    • /
    • 2024
  • The current theories on the interaction between surrounding rock and support in deep-buried tunnels do not consider the form of pre-reinforcement support or the flexibility of primary support, leading to a discrepancy between theoretical solutions and practical applications. To address this gap, a comprehensive mechanical model of the tunnel with pre-reinforced rock was established in this study. The equations for internal stress, displacement, and the radius of the plastic zone in the surrounding rock were derived. By understanding the interaction mechanism between flexible support and surrounding rock, the three-dimensional construction analysis solution of the tunnel could be corrected. The validity of the proposed model was verified through numerical simulations. The results indicate that the reduction of pre-deformation significantly influences the final support pressure. The pre-reinforcement support zone primarily inhibits pre-deformation, thereby reducing the support pressure. The support pressure mainly affects the accelerated and uniform movement stage of the surrounding rock. The generation of support pressure is linked to the deformation of the surrounding rock during the accelerated movement stage. Furthermore, the strength of the pre-reinforcement zone of the surrounding rock and the strength of the shotcrete have opposite effects on the support pressure. The parameters of the pre-reinforcement zones and support materials can be optimized to achieve a balance between surrounding rock deformation, support pressure, cost, and safety. Overall, this study provides valuable insights for predicting the deformation of surrounding rock and support pressure during the dynamic construction of deep-buried weak rock tunnels. These findings can guide engineers in improving the construction process, ensuring better safety and cost-effectiveness.

Pillar stability in very near-twin tunnels (초근접 병설터널의 필라 안정성 확보)

  • Kim, Donggyou;Koh, Sungyil;Lee, Jeongyong;Lee, Chulhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.699-714
    • /
    • 2022
  • The objective of this study is to suggest a safe and economical pillar reinforcement method when very near-twin tunnels with a minimum interval of 1 m passes through a soft zone such as weathered soil or weathered rock. A standard cross-sectional view of a two-lane road tunnel was applied to suggest a pillar reinforcement method for the very near-twin tunnels. The thickness of the pillar was 1 m. The ground condition around the tunnel was weathered soil or weathered rock. There were four reinforcement methods for pillar stability evaluation. These were rock bolt reinforcement, pre-stressed steel strand reinforcement, horizontal steel pipe grouting reinforcement, horizontal steel pipe grouting + prestressed steel strand reinforcement. When the ground condition was weathered soil, only the pillar reinforced the horizontal steel pipe grouting + prestressed steel strand did not failed. When the ground condition was weathered rock, there were no failure of the pillar reinforced the horizontal steel pipe grouting or the horizontal steel pipe grouting + prestressed steel strand. It is considered that the horizontal steel pipe grouting reinforcement played a role in increasing the stability of the upper part of the pillar by supporting the upper load applied to the upper part of the pillar.

Development of the Fuzzy Expert System for the Reinforcement of the Tunnel Construction (터널 시공 중 보강공법 선정용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.101-108
    • /
    • 2000
  • In this study, an expert system was developed to predict the safety of tunnel and choose proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database. The expert system developed in this study have two main parts named pre-module and post-module. Pre-module decides tunnel information imput items based on the tunnel face mapping information which can be easily obtained in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. The comparison result between the predicted reinforcement system level and measured ones was very similar. In-situ data were obtained in three tunnel sites including subway tunnel under Han river, This system will be very helpful to make the most of in-situ data and suggest proper applicability of tunnel reinforcement system developing more resonable tunnel support method from dependance of some experienced experts for the absent of guide.

  • PDF

Development of the Fuzzy Expert System for the Reinforcement of Tunels during Construction (터널 시공 중 보강공법 선전용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.127-139
    • /
    • 2000
  • In the study, an expert system was developed to predict the safety of tunnel and select proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database, For this development, many tunnelling sites were investigated and the applied countermeasures were studied after building tunnel database. There will be benefit for the deciding tunnel reinforcement method in the case of poor ground condition. The expert system developed in the study has two main parts, pre-module and post-module. Pre-module is used to decide input items of tunnel information based on the tunnel face mapping information which can be easily obtained in in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. Post-module is used to infer the applicability of each reinforcement methods according to the face level. The result of the predicted reinforcement system level was similar to measured ones. In-situ data were obtained in three tunnel sites including subway tunnel under Han River. Therefore, this system will be helpful to make the mose of in-situ data available and suggest proper applicability of tunnel reinforcement system to development more resonable tunnel support method without dependance of some experienced experts opinions.

  • PDF

Variational Autoencoder-based Assembly Feature Extraction Network for Rapid Learning of Reinforcement Learning (강화학습의 신속한 학습을 위한 변이형 오토인코더 기반의 조립 특징 추출 네트워크)

  • Jun-Wan Yun;Minwoo Na;Jae-Bok Song
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.352-357
    • /
    • 2023
  • Since robotic assembly in an unstructured environment is very difficult with existing control methods, studies using artificial intelligence such as reinforcement learning have been conducted. However, since long-time operation of a robot for learning in the real environment adversely affects the robot, so a method to shorten the learning time is needed. To this end, a method based on a pre-trained neural network was proposed in this study. This method showed a learning speed about 3 times than the existing methods, and the stability of reward during learning was also increased. Furthermore, it can generate a more optimal policy than not using a pre-trained neural network. Using the proposed reinforcement learning-based assembly trajectory generator, 100 attempts were made to assemble the power connector within a random error of 4.53 mm in width and 3.13 mm in length, resulting in 100 successes.

Flexural Rehabilitation Effect of Pre-loaded RC Beams Strengthened by Steel Plate (재하상태에 따른 강판보강공법의 휨 보강효과)

  • 한복규;홍건호;신영수;조하나
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.701-704
    • /
    • 1999
  • The purpose of this study was to investigate the effectiveness of the flexural rehabilitation of the pre-loaded reinforced concrete beams strengthened by the steel plate. Main test parameters were the existence and the magnitude of the pre-loading at the flexural of rehabilitation and the tensile reinforcement ratio of the specimens. Seven beam specimens were tested to investigate the effectiveness of the rehabilitation method. Test results showed that the ultimate load capacities of the pre-loaded specimens were higher than not-pre-loaded specimens at the rehabilitation. The cause of the pharameter was analyzed if is suggested that the bond failure between the concrete and the strengthening steel plate occured prior to the yielding of the tension reinforcement. The member flexural stiffnesses, were similar regardless of the load conditions at retrofit and failure modes showed brittle aspect caused by rip-off failure.

  • PDF

Effectiveness of CFRP jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.393-408
    • /
    • 2007
  • This paper presents the findings of an experimental study to evaluate retrofit methods which address particular weaknesses that are often found in reinforced concrete structures, especially older structures, namely the lack of the required flexural and shear reinforcement within the columns and the lack of the required shear reinforcement within the joints. Thus, the use of a high-strength fiber jacket for cases of post-earthquake and pre-earthquake retrofitting of columns and beam-column joints was investigated experimentally. In this paper, the effectiveness of the two jacket styles was also compared.

CFT seismic reinforcement method using diaphragm pre-assembled ㄷ-shaped column (다이어프램 선 조립 ㄷ형태 기둥을 이용한 CFT내진보강공법)

  • Woo, Jong-Yeol;Shin, Seung-Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.151-152
    • /
    • 2022
  • When reinforcing an existing building with the Concrete Filled Tube(CFT) structure, it is impossible to form a diaphragm inside with the existing method. Therefore, in this study, a construction method was proposed so that the internal diaphragm could be welded on four sides by using a slot to transmit force.

  • PDF

Growth of Time-Dependent Strain in Reinforced Cement Concrete and Pre-stressed Concrete Flexural Members

  • Debbarma, Swarup Rn.;Saha, Showmen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • This paper presents the differences in growth of time-dependent strain values in reinforced cement concrete (RCC) and pre-stressed concrete (PSC) flexural members through experiment. It was observed that at any particular age, the time-dependent strain values were less in RCC beams than in PSC beams of identical size and grade of concrete. Variables considered in the study were percentage area of reinforcement, span of members for RCC beams and eccentricity of applied pre-stress force for PSC beams. In RCC beams the time-dependent strain values increases with reduction in percentage area of reinforcement and in PSC beams eccentricity directly influences the growth of time-dependent strain. With increase in age, a non-uniform strain develops across the depth of beams which influence the growth of concave curvature in RCC beams and convex curvature in PSC beams. The experimentally obtained strain values were compared with predicted strain values of similar size and grade of plane concrete (PC) beam using ACI 318 Model Code and found more than RCC beams but less than PSC beams.

The Effects of Self-leadership Reinforcement Program for Hospital Nurses (병원간호사의 셀프리더십 강화 프로그램의 효과)

  • Park, Eun Ha;Chae, Young Ran
    • Journal of Korean Biological Nursing Science
    • /
    • v.20 no.2
    • /
    • pp.132-140
    • /
    • 2018
  • Purpose: This study has been carried out in order to develop and verify the effects of self-leadership reinforcement program for hospital nurses. Methods: The research design was a non-equivalent control group pre-posttest design. Participants were 64 individuals (32 in each group), all of whom were nurses working at a university hospital, with less than five years of job experience. Experimental group was provided with two hours of self-leadership reinforcement program, once per week, for four weeks. The questionnaire for pre and post test included general characteristics, transfer motivation for learning, self-leadership, communication ability, clinical nursing competency, organizational commitment, and turnover intentions. Results: There was a significant difference in self-leadership scores between experimental group and control group (F= 15.10, p<.001). There was also a significant difference between the experimental group and the control group in terms of transfer motivation for learning (t = -5.44 p<.001), communication ability (F = 15.29, p<.001), clinical nursing competency (F = 15.23, p<.001), and organizational commitment scores (F = 7.21, p=.009). Conclusion: The self-leadership reinforcement program developed in this study was effective in improving self-leadership, communication ability, clinical nursing competency, and organizational commitment. Thus, by implementing the program at clinical levels, it will be a basis for nursing personnel resource administration.