• Title/Summary/Keyword: pre-fit load

Search Result 5, Processing Time 0.02 seconds

Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron (CGI를 이용한 대형 디젤엔진의 구조해석)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF

Structural Analysis on the Heavy Duty Diesel Engine and Optimization for Bearing Cap (대형 디젤엔진의 구조응력해석 및 베어링 캡의 최적설계)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. In this study, a three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis. The FE model of the heavy duty diesel engine main parts consisting with four half cylinder was selected. The heavy duty diesel engine parts includes with cylinder block, cylinder head, gasket, liner, bearing cap, bearing and bolts. The loading conditions of engine were pre-fit load, assembly load, and gas load. As the results of structural analysis, because the stress values of cylinder block and bearing cap did not exceed the basic design can be satisfied. But on the part which contacts with cylinder block and bearing cap the stress value exceeds the allowable strength of material. In order to decrease the stress at that part, it was optimized with parametric study.

Behavior of three-tube buckling-restrained brace with circumference pre-stress in core tube

  • Li, Yang;Qu, Haiyan;Xiao, Shaowen;Wang, Peijun;You, Yang;Hu, Shuqing
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.81-96
    • /
    • 2019
  • The behavior of a new Three-Tube Buckling-Restrained Brace (TTBRB) with circumference pre-stress (${\sigma}_{{\theta},pre}$) in core tube are investigated through a verified finite element model. The TTBRB is composed of one core tube and two restraining tubes. The core tube is in the middle to provide the axial stiffness, to carry the axial load and to dissipate the earthquake energy. The two restraining tubes are at inside and outside of the core tube, respectively, to restrain the global and local buckling of the core tube. Based on the yield criteria of fringe fiber, a design method for restraining tubes is proposed. The applicability of the proposed design equations are verified by TTBRBs with different radius-thickness ratios, with different gap widths between core tube and restraining tubs, and with different levels of ${\sigma}_{{\theta},pre}$. The outer and inner tubes will restrain the deformation of the core tube in radius direction, which causes circumference stress (${\sigma}_{\theta}$) in the core tube. Together with the ${\sigma}_{{\theta},pre}$ in the core tube that is applied through interference fit of the three tubes, the yield strength of the core tube in the axial direction is improved from 160 MPa to 235 MPa. Effects of gap width between the core tube and restraining tubes, and ${\sigma}_{{\theta},pre}$ on hysteretic behavior of TTBRBs are presented. Analysis results showed that the gap width and the ${\sigma}_{{\theta},pre}$ can significantly affect the hysteretic behavior of a TTBRB.

THE EFFECTS OF FABRICATION OF GOLD CYLINDER AND ABUTMENT ON THE FITNESS AND PRELOAD OF THE PROSTHESIS (지대주와 금속 실린더의 종류가 보철물의 적합도 및 preload에 미치는 영향)

  • Ha Jum-Im;Jeong Hoe-Yeol;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.451-465
    • /
    • 2003
  • Statement of problem : Recently various implant components such as premachined gold cylinder, plastic cylinder gold UCLA abutment and plastic abutment were developed and used clinically without clinical investigation. Purpose : The purpose of this study was to evaluate the effects of fabrication of gold cylinder on the fitness and preload of the standard abutment and also the effects of fabrication of UCLA gold abutment on the fitness and stress transfer around the implant fixture. Material and method : Three kinds of gold cylinders such as, as-received gold cylinder (Nobel Biocare, Sweden), gold cylinder after casting, and plastic cylinder after casting with type IV gold alloy were tested over the top of the standard abutment. At the same time, three types of abutments such as, gold UCLA abutment before and after casting, and plastic abutment after casting were tested. The cylinder and abutment was secured over the fixture with conventional pre-load values using an electronic torque controller (Nobel Biocare, Sweden). The fitness of the abutment on the fixture and gold cylinder over the standard abutment were measured using the microhardness tester (MXT 70, Matsuzawa, Japan). Preload and the strain values were recorded using the strain balance unit (SB-10, Measurement group, Raleigh, USA) and strain indicator (P-3500, Measurement group, Raleigh, USA) systems. Results and conclusion : 1. Significant differences were found in the fit between the gold cylinder and plastic cylinder. 2 There were significant differences between the preload of the gold cylinder and that of the plastic cylinder. 3. Significant differences were found in the fit between the gold UCLA abutment and plastic UCLA abutment. 4. There were no significant differences in the stress generated on the supporting structure of the fixture among different cylinder and abutment groups.

Surface Characteristics of Ground and Post-Sintered Zirconia (지르코니아의 소결 후 특성)

  • Kim, Min-Jeong;Kim, Im-Sun;Choi, Byung-Hwan;Kim, Won-Gi
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.157-163
    • /
    • 2016
  • Purpose: It is to compare and evaluate the change of the wear rate and phase variation of the Zirconia before and after the sintering after the grinding by a high speed equipment manufactured for the Zirconia. Methods: The specimen of the sintered Zirconia was manufactured as size of $15mm{\times}15mm{\times}2mm$. The grinding has been applied to each of all pieces of each test groups for a minute fit for each condition at same speed of 50,000 rpm by a diamond bur at high speed handpiece with injection of the air and water. For the observation of the surface before and after the sintering of the each test piece, the cross section of it was observed as 100 magnification by a scanning electron microscope after it was coated by PT, and the diffraction analysis was performed by XDR to compare the crystal phase of the Zirconia. The average surface roughness value of all specimens were evaluated. The wear test was performed at room temperature by applying a load of 1kg for 120,000 cycles for the chewing period 6 months. Wear was analyzed for the enamel cusps by measurement of the vertical substance loss with a laser scanner. Conclusion: The phase variation from the tetragonal phase to the monoclinic phase was confirmed in the test group of the pre-sintered Zirconia after the grinding, and the value of the surface roughness and the wear rate was increased in experimental group.