• Title/Summary/Keyword: pre-curing

Search Result 104, Processing Time 0.026 seconds

Study on Mechanical Properties Modification of Styrene Butadiene Rubber Composites Filling with Graphene and Molybdenum Disulfide

  • Xu, Li Xiang;Sohn, Mi Hyun;Kim, Yu Soo;Jeong, Ye Rin;Cho, Ur Ryong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.52-59
    • /
    • 2019
  • Styrene-butadiene rubber (SBR) composites, incorporated with graphene, molybdenum disulfide and their hybrid in different filling ratio, were fabricated by a two roll-mill. The dispersion states of all the samples' matrix were employed by carbon black dispersion tester. The curing properties of the pre-vulcanized rubber composites were investigated, after molding by heating press machine, the tensile strength, storage modulus, friction coefficient, the swelling property had also been tested according to ASTM. The composite G1M10 (filling with 1 phr graphene and 10 phr molybdenum) showed the best mechanical properties and viscoelastic properties in this research with a better filler dispersion state and more compact matrix structure.

Failure Paths of Polymer/Roughened Metal Interfaces under Mixed-Mode Loading (혼합 하중하에서의 고분자/거친금속 계면의 파손경로)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.322-327
    • /
    • 2004
  • Copper-based leadframe sheets were oxidized in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched Brazil-nut (SBN) specimens. The SBN specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under mixed-mode (mode I + mode II) loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The results revealed that the failure paths were strongly dependent on the oxide type. In case of brown oxide, hackle-type failure was observed and failure path lay near the EMC/CuO interface with a little inclining to CuO at all case. On the other hand, in case of black oxide, quite different failure path was observed with respect to the distance from the tip of pre-crack and phase angle. Different failures occurred with oxide type is presumed to be due to the difference in microstructure of the oxides.

DEVELOPMENT AND APPLICATION OF SUBSTRUCTURE NON SUPPORTING FORMWORK FOR TOP-DOWN CONSTRUCTION

  • Mee-Ra Jeong;Hong-Chul Rhim;Doo-Hyun Kang;Kwang-Jun Yoo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.788-793
    • /
    • 2009
  • Constructing substructures by using Top-Down or Downward method needs an efficient formwork system because of difficulties in supporting concrete slabs from the bottom while excavation is in process. Existing underground formwork systems can be classified by three types: graded ground supported type (Slab On Grade, Beam On Grade), suspension type (Non Supporting Top Down Method), and bracket supported type (Bracket Supported R/C Downward). Each method has its own advantages and limits. Application of a specific formwork system for a given construction site is determined by various conditions and affect construction time and cost. This paper presents a newly developed underground non-supporting formwork system, which combines the advantages of a suspension type and a bracket supported type while it overcomes limits of two types. The developed system has a moving formwork which is supported by suspension cables hanging from the bracket placed at the top of pre-installed substructure columns. Then, the moving formwork is repeatedly lowered down for the next floor below to support concrete slab during curing. The details of this bracket and cable supported system have been investigated for the improvement of easiness in construction.

  • PDF

Synthesis and Curing Behaviors of Polyisoimide Oligomers with Ethynyl End Groups (Ethynyl 말단기를 갖는 Polyisoimide 올리고머의 합성 및 이들의 경화거동에 관한 연구)

  • Choi, Seok Woo;Kim, Bo Ock;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.774-781
    • /
    • 2014
  • Acetylenic or phenylethynyl end-capped polyisoimide oligomers ($M_w$ 2500 g/mol, 5000 g/mol) based upon 4,4'-diamino diphenyl ether (4,4'-ODA)/4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-ODA/3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA) were synthesized by using 4-ethynylaniline (4-EA) or 4-phenylethynyl phthalic anhydride (4-PEPA) as an end capper. The incorporation of ethynyl groups were confirmed by FTIR spectroscopy. The isomerization temperature was influenced by molecular weight as well as the backbone structure of polyisoimides oligomers. Thus, polyisoimide oligomers with molecular weight of 2500 g/mol was found to be imidized at temperature $10^{\circ}C$ lower than that for the oligomers with molecular weight of 5000 g/mol. The crosslinking reaction of ethynyl groups occurred at a higher temperature than that for the isoimide/imide isomerization reaction. These two reactions were totally or partially overlapped on the DSC thermograms for the polyisoimide oligomer end-capped with 4-EA. Kinetics of thermal imidization and crosslinking reactions for the 4,4'-ODA/ODPA polyisoimide oligomers end-capped with 4-PEPA were investigated by performing dynamic DSC experiments at heating rate of $10^{\circ}C/min$. The activation energy and pre-exponential factors were 141 kJ/mol and $1.45{\times}10^{13}min^{-1}$ for the imidization reaction and 177 kJ/mol and $2.90{\times}10^{13}min^{-1}$ for the crosslinking reaction, respectively.

Attachment of Silver Nanoparticles to the Wool Fiber Using Glycidyltrimethylammonium Chloride(GTAC) (Glycidyltrimethylammonium Chloride(GTAC)를 이용한 양모 섬유 표면의 Silver Nanoparticle 부착)

  • Lee, Seungyoung;Sul, In Hwan;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.70-76
    • /
    • 2016
  • Silver nanoparticles(AgNPs) were attached to wool fibers using glycidyltrimethylammonium chloride(GTAC), which is a type of quaternary ammonium salt. GTAC, which contains an epoxy functional group that, under high temperatures, generates a ring-opening reaction with wool fibers, which contain the amine group. Then, the AgNPs are attached to the surface of the GTAC-treated wool fibers by treatment with a silver colloidal solution. The process involves the following procedures: (1) The wool fibers are immersed in the GTAC solution, followed by pre-drying at $80^{\circ}C$ and curing at $180^{\circ}C$ to induce an alteration in the chemical structure; and (2) The wool fibers treated with GTAC are immersed in the silver colloid at $40^{\circ}C$ for 120 min to chemically induce a strong attachment of the AgNPs to the wool fibers. Scanning electron microscopy was used to analyze the influence of the concentrations of GTAC and the silver colloid, as well as the influence of the applied temperature of the silver colloid on the wool fibers, and the influence of the morphological changes in the wool fiber surfaces. As a result, the enhanced concentrations of GTAC and the silver colloid together with an elevated applied temperature of silver colloid have a tendency to increase in Ag atomic%.

The Application of Maturity Method on Whitetopping Construction (성숙도 개념을 이용한 Whitetopping 포장의 현장 적용)

  • Jung, Jong-Suk;Cho, Yoon-Ho;Lee, Kang-Won
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.83-92
    • /
    • 2005
  • Maturity method is a non-destructive method for estimating in-place concrete strength as a function of time and temperature. The main objective is to use maturity method determining joint sawing and traffic opening time for whitetopping construction in Korea. Another objective is to investigate the influence of air temperature in the correspondence to slab temperature and maturity value. For determining the joint sawing and traffic opening time, thermachron i-button and strain gage were inserted in the fresh concrete in the slab and a maturity value was calculated at desired times. In-place strength was then estimated from a pre-established relationship between maturity values and compressive strength. The results showed that there are significant differences between the estimated strength obtained from maturity curve and in-place concrete strength. The reasons are that the gain of in-place concrete strength was influenced by several factors in the field such as curing conditions, air temperature, and wind speed etc. Also, the results showed that air temperature had significant influence on slab temperature and maturity value The slopes of maturity curves exponentially decrease as air temperature decreases. This means that maturity value sharply dropped as air temperature decreases.

  • PDF

preprocessing methodology to reducing calculation errors in 3 dimensional model for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 3차원 모델의 해석 오류 저감을 위한 사전 수정 방법 연구)

  • Lee, Kyusung;Lee, Juhee;Lee, Yongjun
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study is part of three-dimensional(3D) heat transfer analysis program developmental process. The program is being developed without it's own built in 3D-modeller. So 3D-model must be created from another 3D-modeller such as generic CAD programs and imported to the developed program. After that, according to the 3D-geometric data form imported model, 3D-mesh created for numerical calculation. But the 3D-model created from another 3D-modeller is likely to have errors in it's geometric data such as mismatch of position between vertexes or surfaces. these errors make it difficult to create 3D-mesh for calculation. These errors are must be detected and cured in the pre-process before creating 3D-mesh. So, in this study four kinds of filters and functions are developed and tested. Firstly, 'vertex error filter' is developed for detecting and curing for position data errors between vertexes. Secondly, 'normal vector error filter' is developed for errors of surface's normal vector in 3D-model. Thirdly, 'intersection filter' is developed for extracting and creating intersection surface between adjacent objects. fourthly, 'polygon-line filter' is developed for indicating outlines of object in 3D-model. the developed filters and functions were tested on several shapes of 3D-models. and confirmed applicability. these developed filters and functions will be applied to the developed program and tested and modified continuously for less errors and more accuracy.

COLOR CHANGES OF PALFIQUE ESTELITE BETWEEN PRE AND POST IRRADIATIONS (Palfique Estelite의 경화전후 색조 변화에 관하여)

  • Aoshima, Yutaka;Takagi, Haruhito;Sairenji, Noriko;Ikeda, Harughiko;Kuroda, Takashi;Onose, Hideo
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.6 no.1
    • /
    • pp.10-17
    • /
    • 1997
  • It is pointed out that the color of composite resin is changing according to it's ploymerization and this color change is a harmful effect for the clinical satisfacion of composite resin restoration. The purpose of this study was to compare the changes of color of newly developed composite resins between before and after exposure of activating light. Five Compostie resins (8 shades) were employed: Palfique Estelite(UL, U, DY, G ; Tokuyama), Photo Clearfil A (US : Kuraray), Photo Clearfil Bright (US ; Kuraray), GC Graft LC(A3 ; GC), Silux Plus(U; 3M), Tristirnulus values of each material were determined before and after curing-light exposure by using a Micro Multi Photometer (MMP-1001, Nihon Denshoku Kogyo). The values were transformed into $L^*\;a^*\;b^*$ system and color changes of the resins were evaluated by the changes of $L^*$, $a^*$ and $b^*$ values for the individual shades. In addition, the effects of resin thickness and background color on color changes were also studied The finding were as follows: 1. Color changes of $L^*$, $a^*$ and $b^*$ values were recognized due to the light exposure for all products. The $b^*$ values of Palfique Estelite showed negligible changes for all shades. 2. The $b^*$ values were affected strongly by the background color, especially when decreasing the brightness on the background color.(Request original article reprints to Dr. Aoshima)

  • PDF

Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement

  • Han, Sang Yeon;Moon, Yun-Hee;Lee, Jonghyuk
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.251-258
    • /
    • 2020
  • PURPOSE. The bond strengths between resin denture teeth with various compositions and denture base resins including conventional and CAD/CAM purposed materials were evaluated to find influence of each material. MATERIALS AND METHODS. Cylindrical rods (6.0 mm diameter × 8.0 mm length) prepared from pre-polymerized CAD/CAM denture base resin blocks (PMMA Block-pink; Huge Dental Material, Vipi Block-Pink; Vipi Industria) were bonded to the basal surface of resin teeth from three different companies (VITA MFT®; VITA Zahnfabrik, Endura Posterio®; SHOFU Dental, Duracross Physio®; Nissin Dental Products Inc.) using resin cement (Super-Bond C&B; SUN MEDICAL). As a control group, rods from a conventional heat-polymerizing denture base resin (Vertex™ Rapid Simplified; Vertex-Dental B.V. Co.) were attached to the resin teeth using the conventional flasking and curing method. Furthermore, the effect of air abrasion was studied with the highly cross-linked resin teeth (VITA MFT®) groups. The shear bond strengths were measured, and then the fractured surfaces were examined to analyze the mode of failure. RESULTS. The shear bond strengths of the conventional heat-polymerizing PMMA denture resin group and the CAD/CAM denture base resin groups were similar. Air abrasion to VITA MFT® did not improve shear bond strengths. Interfacial failure was the dominant cause of failure for all specimens. CONCLUSION. Shear bond strengths of CAD/CAM denture base materials and resin denture teeth using resin cement are comparable to those of conventional methods.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.