• Title/Summary/Keyword: pre-compression

Search Result 291, Processing Time 0.033 seconds

Microinstabilities at Quasi-Perpendicular Shocks in the High-�� ICM

  • Kim, Sunjung;Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.2-52.2
    • /
    • 2020
  • At quasi-perpendicular shocks in the high-�� (��=Pgas/Pmag~100) intracluster medium (ICM), various microinstabilities occur by the temperature anisotropies and/or drift motions of plasma. In the downstream, the Alfvén ion cyclotron instability (AIC) due to the ion temperature anisotropy (Ti⊥>Ti║) is triggered by shock-reflected ions, the whistler instability (WI) is driven by the electron temperature anisotropy (Te⊥>Te║) as a consequence of the shock compression of magnetic fields, and the mirror instability is generated due to the ion and/or electron temperature anisotropy. At the shock foot, the modified two stream instability (MTSI) is possibly excited by the cross-field drift between ions and electrons. In the upstream, electron firehose instability (EFI) is driven by the electron temperature anisotropy or the relative drift between incoming and reflected electrons. These microinstabilities play important roles in the particle acceleration in ICM shocks, so understanding of the microinstabilities and the resultant plasma waves is essential. In this study, based on a linear stability analysis, the basic properties of the microinstabilities in ICM shocks and the ion/electron scale fluctuations are described. We then discuss the implication of our work on the electron pre-acceleration in ICM shocks.

  • PDF

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Mineral and Compressive Strength Characteristics of Calcium Silicate and Calcium Sulfoaluminate Mixed Cement in Carbon Dioxide Atmosphere (이산화탄소 분위기에서 칼슘실리케이트와 칼슘설포알루미네이트 혼합시멘트의 광물 및 압축강도 특성)

  • Dae-geun Lee;Sun-Mok Lee;Jung-Jun Park;Ki-Yeon Moon;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.10-17
    • /
    • 2023
  • Calcium silicate cement (CSC) is an environmentally sustainable, low-carbon cement and has garnered significant attention in recent studies. However, the pre-curing step required to activate the carbon dioxide reaction and to handle the sample. This study aimed to examine the viability of extending the application of CSC without pre-curing by enhancing initial strength by mixing calcium sulfoaluminate (CSA) fast-hardening cement into CSC. The investigation assessed changes in compression strength and Q-XRD mineral characteristics concerning variations in the mixing ratio of CSC and CSA fast-hardening cement within a carbon dioxide atmosphere. The compressive strength results indicated that the 3-day and 7-day strengths were 14.18 MPa and 22.98 MPa, respectively, under the 50% CSC condition, meeting the type 1 cement KS standard. Mineral characteristics analysis revealed an increase in calcite mineral, a byproduct of the carbon dioxide reaction, contributing to strength enhancement. Even after seven days, substantial quantities of unreacted rankinitene and pseudowollastonite were observed, as well as dicalcium silicate and yeelimite, which are hydrated minerals. This observation was confirmed the possibility of strength improvement after 7 days.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.

Geological Structure of the Jirisan Metamorphic Complex of the Yeongnam Massif in the Hwagae Area, Korea (화개지역에서 영남육괴 지리산 변성암복합체의 지질구조)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.251-261
    • /
    • 2013
  • Hwagae area, which is situated in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of Precambrian Jirisan metamorphic rock complex (JMRC). Lithofacies distribution of the Precambrian constituent rocks mainly shows NS-trending tight fold and EW-trending open fold. This paper researched deformational phased structural characteristics of JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structure of this area was formed through at least three phases of ductile deformation. (1) Most of structural elements related to the $D_1$ deformation were recognized as $S_{0-1-2}$ composite foliation which was transposed by the $D_2$ deformation. (2) The $D_2$ deformation occurred under the EW-directed tectonic compression, and formed the NS-trending $F_2$ fold and $D_2$ ductile shear zone which is (sub)parallel to the axial plane of $F_2$ fold. (3) The $D_3$ deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It indicates that the distribution of Precambrian lithofacies showing NS and EW-trending folds in the Hwagae area is closely associated with the $D_2$ and $D_3$ deformations, respectively.

The effectiveness of Cardiopulmonary Resuscitation training in elementary students (일부 초등학생의 심폐소생술교육의 효과)

  • Kim, Hee-Jung;Choi, Eun-Sook
    • The Korean Journal of Emergency Medical Services
    • /
    • v.11 no.2
    • /
    • pp.51-66
    • /
    • 2007
  • Purpose: With a view to providing basic data to develop cardiopulmonary resuscitation education suitable for elementary students, the cardiopulmonary resuscitation education was conducted to grasp students' knowledge, skills accuracy and the attitude change before and after the education. Methods: Convenience sampling was made on fourth and fifth graders(total-35 students) of S elementary school located in K city, Chungcheongnam-do, and this was a pre-experiment research designed before and after choosing a single group. In terms of methods, specifically we, researchers ; 1) Handed out questionnaires to students directly to make them fill in firsthand and collected the questionnaires. 2) Utilized PPT materials based on 2005 AHA guideline and DVD materials of AHA, to give students theoretical education of cardiopulmonary resuscitation. We used Anne/SkillReporter$^{(R)}$ torso produced by Leardal Inc, and Little Anne to conduct practical education individually. 3) Asked students to give Anne/SkillReporter$^{(R)}$ torso cardiopulmonary resuscitation five times with the ratio of 30 : 2, and then one of researchers filled in the evaluation sheet individually. 4) Evaluated the accuracy of students' ability to perform the resuscitation based on the record of Anne/SkillReporter$^{(R)}$ integrated printer(which was the objective tool to grasp students' skills accuracy). 5) Gave out questionnaires to make students fill them in and then collected them. after completing the practical evaluation. Results: 1) In case of the attitude about cardiopulmonary resuscitation, Students' confidency rose from 19.28%(before the education) to 93.57(after the education)- which is a positive change. 2) As the result of the education, some elementary students scored 11 points (full score-16 points), up from 5 points before the education, in terms of the knowledge about cardiopulmonary resuscitation. The average point also reached 13.14 points(after the education), jump from 8.37(before the education), which was the rise of 29.8%. 3) When it comes to the practical performance, the skills accuracy was 80.93% on average, and the calculation method was as follows: total items were 16, and each item was marked form 0 to 2 points, meaning the full score was 32 points. The minimum score was 19 points and the maximum was 32($M{\pm}SD=25.90{\pm}2.88$), which was calculated based on percentage. 4) Regarding skills accuracy, respiration accuracy(%)($M{\pm}SD=30.20{\pm}27.16$) was higher than pressure accuracy(%) ($M{\pm}SD=15.34{\pm}25.27$). Conclusion: The result showed that students' attitude on cardiopulmonary resuscitation changed positively. and meaningful difference(p = .00) existed in the change of students' knowledge. In terms of skills accuracy. chest compression and airway control showed high accuracy, but the result of Anne/SkillReporter$^{(R)}$ performance showed that the accuracy of chest compression was lower than that of mouth-to-mouth resuscitation.

  • PDF

Performance Analysis of Object Detection Neural Network According to Compression Ratio of RGB and IR Images (RGB와 IR 영상의 압축률에 따른 객체 탐지 신경망 성능 분석)

  • Lee, Yegi;Kim, Shin;Lim, Hanshin;Lee, Hee Kyung;Choo, Hyon-Gon;Seo, Jeongil;Yoon, Kyoungro
    • Journal of Broadcast Engineering
    • /
    • v.26 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • Most object detection algorithms are studied based on RGB images. Because the RGB cameras are capturing images based on light, however, the object detection performance is poor when the light condition is not good, e.g., at night or foggy days. On the other hand, high-quality infrared(IR) images regardless of weather condition and light can be acquired because IR images are captured by an IR sensor that makes images with heat information. In this paper, we performed the object detection algorithm based on the compression ratio in RGB and IR images to show the detection capabilities. We selected RGB and IR images that were taken at night from the Free FLIR Thermal dataset for the ADAS(Advanced Driver Assistance Systems) research. We used the pre-trained object detection network for RGB images and a fine-tuned network that is tuned based on night RGB and IR images. Experimental results show that higher object detection performance can be acquired using IR images than using RGB images in both networks.

Image Processing of Pseudo-rate-distortion Function Based on MSSSIM and KL-Divergence, Using Multiple Video Processing Filters for Video Compression (MSSSIM 및 쿨백-라이블러 발산 기반 의사 율-왜곡 평가 함수와 복수개의 영상처리 필터를 이용한 동영상 전처리 방법)

  • Seok, Jinwuk;Cho, Seunghyun;Kim, Hui Yong;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.768-779
    • /
    • 2018
  • In this paper, we propose a novel video quality function for video processing based on MSSSIM to select an appropriate video processing filter and to accommodate multiple processing filters to each pixel block in a picture frame by a mathematical selection law so as to maintain video quality and to reduce the bitrate of compressed video. In viewpoint of video compression, since the properties of video quality and bitrate is different for each picture of video frames and for each areas in the same frame, it is difficult for the video filter with single property to satisfy the object of increasing video quality and decreasing bitrate. Consequently, to maintain the subjective video quality in spite of decreasing bitrate, we propose the methodology about the MSSSIM as the measure of subjective video quality, the KL-Divergence as the measure of bitrate, and the combination method of those two measurements. Moreover, using the proposed combinatorial measurement, when we use the multiple image filters with mutually different properties as a pre-processing filter for video, we can verify that it is possible to compress video with maintaining the video quality under decreasing the bitrate, as possible.

Effects of EMS Compression Belts with Different Muscular Patterns on Lumbar Stabilization (근육모양의 패턴을 달리한 EMS 복압벨트가 요추 안정화에 미치는 영향에 관한 연구)

  • Kim, Dae-Yeon;Park, Jin-hee;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.81-92
    • /
    • 2021
  • In this study, we investigated the effects of five EMS lumbar back pressure belts produced on an anatomical basis on lumbar spine stabilization. Five core muscles were selected, including the urinal, vertebral column, endotracheal, external abdominal, and large back muscles, and patterns were designed using a conductive fabric considering the appropriate muscle shape and pain-causing points. We experimented with four motions to examine the effects of different EMS abdominal compression belts on lumbar spine stabilization. Five healthy men in their 20s were selected. The selection conditions include no back pain history for the past three months, no restricted movements through pre-inspection, and the muscular strength of the body should belong to the normal grade. Using SLR, the sequence of experimental actions was chosen from the following but not limited to left-hand, body-hand, and back-line forces. Resting between movements lasted for 2 min, and the experiments were conducted after wearing the EMS abdominal pressure belt. Electrical stimulation was applied for 10 min to increase blood flow and muscle activation. The statistics of the experimental results were analyzed for specific differences by conducting the Wilcoxon and Friedman tests with nonparametric tests. The ranking results of each pattern were successfully assessed in the order of 5, 4, 3, 1, 2 for the five patterns, and we could identify slightly more significant results for experimental behavior associated with each muscle movement. Patterns produced based on anatomy showed differentiated effects when electric stimulation was applied to each muscle in different shapes, which could improve the stabilization of the lumbar spine in everyday life or training to the public. Based on these results, subsequent research would focus on developing smart healthcare clothing that is practical in daily life by employing different anatomical mechanisms, depending on the back pain, to utilize trunk-type tights.

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.