• Title/Summary/Keyword: ppMMA

Search Result 12, Processing Time 0.049 seconds

Preparation and Characterization of Plasma Polymerized Methyl Methacrylate Thin Films as Gate Dielectric for Organic Thin Film Transistor

  • Ao, Wei;Lim, Jae-Sung;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.836-841
    • /
    • 2011
  • Plasma polymerized methyl methacrylate (ppMMA) thin films were deposited by plasma polymerization technique with different plasma powers and subsequently thermally treated at temperatures of 60 to $150^{\circ}C$. To find a better ppMMA preparation technique for application to organic thin film transistor (OTFT) as dielectric layer, the chemical composition, surface morphology, and electrical properties of ppMMA were investigated. The effect of ppMMA thin-film preparation conditions on the resulting thin film properties were discussed, specifically O-H site content in the pMMA, dielectric constant, leakage current density, and hysteresis.

Dielectric Properties of Plasma Polymerized ppMMA Thin Film (플라즈마 증합법으로 증착된 ppMMA 박막의 유전특성)

  • Lim, J.S.;Shin, P.K.;Nam, K.Y.;Kim, J.S.;Hwang, M.H.;Kim, J.T.;Lee, Y.H.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1408-1409
    • /
    • 2006
  • In this paper, poly methyl methacrylate thin films were deposited on a ITO glass substrate using a plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized poly methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. Molecular structures of the ppMMAs were investigated using a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the ppMMA thin films were investigated using a source measurement unit (SMU: Keithley 2400). Relationship between the plasma coupling technique/process parameter and ppMMA thin films properties were investigated.

  • PDF

Tunneling Layer의 두께 변화에 따른 유기 메모리의 특성

  • Kim, Hui-Seong;Lee, Bung-Ju;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.366-366
    • /
    • 2013
  • 건식 박막증착 공정인 플라즈마 중합법을 이용하여 유기 재료인 Styrene을 절연 박막으로 제작하였다. 플라즈마 중합된 Styrene (ppS) 절연 박막의 정밀한 공정 제어를 위해 bubbler와 circulator를 이용하여 습식 공정과 비교하여도 절연 특성이 뛰어난 pps 절연 박막을 증착하고, 이를 활용하여 gate 전극으로 ITO, insulator layer로 pps, floating gate로 Au, tunneling layer로 ppMMA와 pps, semiconductor로 Pentacene, source/drain 전극으로 Au를 사용한 비휘발성 메모리 소자를 제작하였다. ppMMA와 pps의 서로 다른 tunneling layer의 두께 변화에 따른 비휘발성 메모리 특성 변화를 연구하였다.

  • PDF

Ultra Thin Film Encapsulation for Flexible OLED (플렉시블 유기 EL 소자를 위한 초박막 보호층)

  • Lim, J.S.;Shin, P.K.;Lim, K.B.;Song, J.H.;Kim, C.Y.;Lee, B.S.;Jeung, Y.S.;Lim, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1412-1413
    • /
    • 2006
  • In this research, an organic thin 13 passivation layer was newly adopted to prefect the organic layer from ambient moisture and oxygen. As the organic thin film passivation layer, poly methyl methacrylate thin films (ppMMA) were deposited using a plasma polymerization technique. In order to their passivation performance for OLEDs, water vapor transmission rate (WVTR) of the ppMMAs were analyzed and luminance-current-voltage (L-I-V)/luminance-time (L-T) characteristics of the OLEDs with and without ppMMA passivation layer were investigated. The OLEDs had a structure of ITO/TPD (HTL)/Alq3(EML&ETL)/Al. The OLED with ppMMA passivation layer showed improved L-T performance than that of without ppMMA passivation layer.

  • PDF

Organic Field Effect Transistor Based Memory Device With Plasma Polymerized Styrene Thin Film as Polymer Electret

  • Kim, Hui-Seong;Lee, Bung-Ju;Jeong, Geon-Su;Sin, Baek-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.195.2-195.2
    • /
    • 2013
  • 플라즈마 중합 증착기술을 이용하여 ppMMA (plasma polymerized methyl methacrylate) 및 ppS (plasma polymerized styrene) 박막을 제작하고, ppMMA를 게이트 절연층, polymer electret인 ppS를 메모리층으로 한 전계효과트랜지스터 기반 유기 메모리 소자를 제작하였다. 메모리층인 ppS의 두께를 각각 30, 60, 90 nm로 달리한 유기 메모리 소자가 C-V 및 I-V 특성에서 나타내는 히스테리시스 현상을 분석하여 메모리 특성을 평가했으며, 메모리층의 두께 변화에 따른 유기 메모리 소자의 성능을 비교분석하였다.

  • PDF

Fabrication of OTFT with plasma polymerized methylmethacrylate organic thin film (플라즈마 중합된 ppMMA 유기 박막을 절연층으로 한 유기박막 트랜지스터의 제작)

  • Lim, J.S.;Shin, P.K.;You, D.H.;Park, G.B.;Lim, H.C.;Jo, G.S.;Lee, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1347-1348
    • /
    • 2007
  • In this paper, ITO gate electrode surface was modified using $O_2$ plasma and organic gate insulating layers were deposited on the ITO surface using plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. The ppMMAs were investigated using atomic force microscopy (AFM) and a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the organic thin film transistors (OTFTs) were investigated using a source measurement unit (SMU: Keithley 2612). Proposed method can be applied to dry-process to fabricate OTFTs during overall fabricating steps.

  • PDF

A Study on the Preparation and Resist Characterization of the Plasma Polymerized Thin Films (플라즈마중합막의제작과레지스트 특성에 관한 연구)

  • 이덕출;박종관;한상옥;김종석;조성욱
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.802-808
    • /
    • 1994
  • The purpose of this paper is to describe an application of plasma polymerized thin film as an electron beam resist. Plasma polymerized thin film was prepared using an interelectrode capacitively coupled gas-flow-type reactor, and chosen methylmethacrylate(MMA)and methylmethacrylate-tetrameth-yltin(MMA-TMT) as a monomer. This thin films were also delineated by the electron-beam apparatus with an acceleration voltage of 30kV and an expose dose ranging from 20 to 900$\mu$C/cmS02T. The delineated pattern in the resist was developed with the same reactor which is used for polymerization using an argon as etching gas. The growth rate and etching rate of the thin film is increased with increasing of discharge power. Thin films by plasma polymerization show polymerization rate of 30~45($\pm$3) A/min, and etching rate of 440($\pm$30) A/min during Ar plasma etching at discharge power of 100W. In apparently lower than that of conventional PMMA, but the plasma-etching rate of PP(MMA-TMT) was higher than that of PPMMA.

  • PDF

The plasma polymerized polymer thin films for application to organic thin film transistor (유기박막 트랜지스터로의 응용을 위한 플라즈마 중합 고분자 박막)

  • Lim, Jae-Sung;Shin, Paik-Kyun;Lee, Boong-Joo;You, Do-Hyun;Park, Se-Geun;Lee, El-Hang
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1353_1354
    • /
    • 2009
  • The OTFT devices had inverted staggered structures of Au/pentacene/ppMMA/ITO on PET substrate. The overall device performances of the flexible devices such as the operating voltage, the field effect mobility, the on/off ratio and the off current are somewhat worse than those of devices fabricated on glass substrates. Pentacene/ppMMA OTFT benchmarks (mobility, sub-threshold slope, on/off ratio) were comparable to that of solution cast PMMA, but below average when compared to other polymer gate dielectrics. However, threshold and drive voltages were among the lowest reported for a polymer gate dielectric, and surpassed only by ultra-thin SAM gate dielectrics.

  • PDF

Cu Catalyst System with Phosphorous Containing Bidendate Ligand for Living Radical Polymerization of MMA

  • Hong Sung Chul;Shin Ki Eun;Noh Seok Kyun;Lyoo Won Seok
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.391-396
    • /
    • 2005
  • The polymerization of methyl methacrylate (MMA) was carried out using CuBr/bidentate phosphorus ligand catalyst systems. MMA polymerization with CuBr/phosphine-phosphinidene (PP) exhibited high conversion ($\~80\%$) in 5 h at $90^{\circ}C$ along with a linear increase of ln($[M]_0/[M]$) versus time, indicating constant concentration of the propagating radicals during the polymerization. The molecular weight of the prepared PMMA tended to increase with conversion, suggesting the living polymerization characteristic of the system. On the other hand, a large difference between the measured and theoretical molecular weight and a broad molecular weight distribution were observed, implicating possible incomplete control over the polymerization. This may have been caused by the low deactivation rate constant ($\kappa_{deact}$) of the system. The low $\kappa_{deact}$, would result in irreversible generation of radicals instead of reversible activation/deactivation process of ATRP. Polymerizations performed at different ligand to CuBr ratios and different monomer to initiator ratios did not afford better control over the polymerization, suggesting that the controllability of CuBr/phosphorus ligand system for ATRP is inherently limited.