• 제목/요약/키워드: power-law fluid

검색결과 119건 처리시간 0.025초

유기랭킨사이클을 이용한 직렬 열병합 사이클의 성능 특성 (Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.699-705
    • /
    • 2011
  • A combined heat and power cogeneration system driven by low-temperature sources is investigated by the first and second laws of thermodynamics. The system consists of Organic Rankine Cycle (ORC) and an additional process heater as a series circuit. Seven working fluids of R152a, propane, isobutane, butane, R11, R123, isopentane and n-pentane are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid is considered to extract maximum power from the source. Results indicate that the second-law efficiency can be significantly increased due to the combined heat and power generation. Furthermore, higher source temperature and lower turbine inlet pressure lead to lower second-law efficiency of ORC system but higher that of combined system. Results also show that the optimum working fluid varies with the source temperature.

경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위 (Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube)

  • 모정하
    • 대한기계학회논문집B
    • /
    • 제38권1호
    • /
    • pp.9-16
    • /
    • 2014
  • 본 논문은 경사진 원형관에서 표면장력과 중력으로 구동되는 비뉴턴 유체(멱법칙 모델)의 유동 및 변위를 이론적으로 연구한 것이다. 그리고 표면장력에 의하여 연속적으로 원형관 내로 유입되는 비뉴턴 유체의 변위를 기술하기 위한 지배방정식을 처음으로 개발하였다. 뉴턴의 운동방정식으로부터 유도된 식은 2계 비선형이며 비제차인 형태의 상미분 방정식이다. 지배방정식의 해를 수평관에서 변위를 시간의 함수로 기술한 식 및 실험과 비교한 결과 정량적으로 동일한 일치를 보였다. 여기에 더하여 정상상태인 힘의 균형식의 결과에 대해서도 정확한 일치로 나타남을 확인할 수 있었다.

브레이크 게인 적응 휠 슬립 제어에 관한 연구 (A Study on Brake Gain Adaptive Wheel Slip Control)

  • 조준상;유승진;이교일
    • 유공압시스템학회논문집
    • /
    • 제4권1호
    • /
    • pp.13-17
    • /
    • 2007
  • The brake gain adaptive wheel slip controller for a vehicle is designed in this paper. The brake gain from braking pressure to braking torque defined by friction coefficient, friction area and effective friction radius is estimated by the adaptive law based on the wheel slip dynamics. And the wheel slip controller is designed based on the estimated brake gain. The robustness of the designed controller is analyzed using Lyapunov function and the convergence of brake gain is verified. Proposed wheel slip controller is verified via CarSim simulation with two kinds of desired wheel slip ratio.

  • PDF

고무 압출성형 공정에 대한 유한요소 해석 (Finite Element Analysis of Rubber Extrusion Forming Process)

  • 하연식;조진래;김태호;김준형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.762-767
    • /
    • 2007
  • As a macromolecule material, melted rubber flow shows characteristics of shear thinning fluid. The dynamic viscosity of this rubber fluid is influenced by temperature and shear strain rate. In this study, the numerical simulation of rubber extrusion forming process has been performed using commercial CFD code, Polyflow. Power-law model considering the effect of shear rate is used for the computer simulation of this non-Newyonian flow. Also Non-isothermal behavior is considered as Arrhenius-law model. Distributions of velocity and temperature are predicted through the simulation.

  • PDF

고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법 (A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow)

  • 이석원;윤재륜
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Penetration behavior of biopolymer aqueous solutions considering rheological properties

  • Ryou, Jae-Eun;Jung, Jongwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.259-267
    • /
    • 2022
  • The rheological and penetration characteristics of sodium alginate and xanthan gum aqueous solutions were analyzed for the development of biopolymer-based injection materials. The results of viscosity measurements for the rheological characteristics analysis show that all aqueous biopolymer solutions exhibit a tendency for shear-thinning, i.e., the apparent viscosity decreases as the shear rate increases. In addition, a regression analysis using several models (Power-law, Casson, Sisko, and Cross) was applied to the shear-thinning fluid analysis results, the highest accuracy was determined by applying the power-law model. The micromodel experiment for the penetration characteristics analysis determined that all biopolymer aqueous solutions show higher pore saturation than water, and that pore saturation tends to increase as the flow rate and concentration increases. When comparing the rheological and penetration characteristics of the biopolymer aqueous solution used in this study, the xanthan gum aqueous solution showed a fully developed shear-thinning tendency, unlike the sodium alginate aqueous solution. This tendency is considered to have the advantage of enhancement injectability and pore saturation.

유체 유동을 고려한 경사기능재료 원통셸의 연성진동 (Coupled Vibration of Functionally Graded Cylindrical Shells Conveying Fluid)

  • 김영완;김규호;위은중
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1119-1125
    • /
    • 2009
  • The coupled fluid-structure interaction problem is analyzed using the theoretical method to investigate the coupled vibration characteristics of functionally graded material(FGM) cylindrical shells conveying an incompressible, inviscid fluid. Material properties are assumed to vary continuously through the thickness according to a power law distribution in terms of the volume fraction of the constituents. The steady flow of fluid is described by the classical potential flow theory. The motion of shell represented by the first order shear deformation theory(FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with exiting results.

압축 유동하에 있는 시멘트 페이스트의 유변학적 거동에 관한 모델링 (Modeling on Rheological Behavior of Cement Paste under Squeeze Flow)

  • 민병현
    • 한국산학기술학회논문지
    • /
    • 제21권9호
    • /
    • pp.405-413
    • /
    • 2020
  • 압축 유동하에서 측정된 시멘트 페이스트의 수직 응력은 변형률의 증가에 따라 변형률이 0.0003에서 0.003 사이 구간인 탄성 고체 구간과 변형률이 0.003에서 0.8 사이 구간인 변형률 경화 구간으로 나누어진다. 두 구간 중 변형률 경화 영역에서 유변학적 특성을 분석하기 위해 모델링 식이 제안되었다. 첫째, 유체 거동의 관점에서, 지수법칙 일관성 지수 m=700 및 멱지수 n=0.2를 갖는 지수법칙 비뉴토니언 모델이 적용되었다. 적용 결과는 탄성 고체 구간을 제외하고는 실험 결과와 좋은 일치를 보여주었다. 둘째, 연성 고체 거동의 관점에서 힘 평형 모델이 적용되었으며, 하중을 측정하는 센서부와 시멘트 페이스트 표면 간의 마찰 계수가 실험데이터에 반구간탐색법을 적용하여 변형률의 다항식으로 도출되었다. 적용 결과는 변형률이 0.003에서 0.3 사이 구간인 중간 영역에서만 실험 결과와 좋은 일치를 보여주었다. 따라서, 압축 유동 하의 시멘트 페이스트의 유변학적 거동은 변형률 경화 구간에서 연성 고체 거동의 관점보다는 지수법칙 비뉴토니언 유체 거동의 관점에서 실험 결과와 더 일치함을 보여주었다.

Free Surface Vortex in a Rotating Barrel with Rods of Different Heights

  • Zhang, Xiaoyue;Zhang, Min;Chen, Wanyu;Yang, Fan;Guo, Xueyan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.325-331
    • /
    • 2016
  • A bathtub vortex above the outlet of a rotating barrel is simulated. By analyzing the Ekman layer theory, it can be found that the main flow circulation is inversely proportional to the thickness of Ekman layer. The thicker the Ekman boundary layer, the weaker the rotational strength and the shorter of the length of gas core is. According to this law, models of barriers with rods of different heights are established. The reduction of air-core length in this air entrainment vortex and weakening the strength of rotation field were achieved.

엔진오일에 물이 혼합될 때 터보챠져 저어널 베어링의 열유체윤활 해석 (Thermohydrodynamic Lubrication Analysis of Turbocharger Journal Bearing Involving the Mixture of Water within Engine Oil)

  • 전상명
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.131-140
    • /
    • 2012
  • In this study, using the governing equation for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non- Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing in a turbocharger lubricated with the mixture of two Newtonian fluid, for example, water within engine oil. The results related with the bearing performance are shown that the bearing friction is to decrease and the side leakage and bearing load increase as increasing the water content in an engine oil.