• 제목/요약/키워드: power-law exponent

검색결과 142건 처리시간 0.022초

Thermal buckling analysis of magneto-electro-elastic porous FG beam in thermal environment

  • Ebrahimi, Farzad;Jafari, Ali;Selvamani, Rajendran
    • Advances in nano research
    • /
    • 제8권1호
    • /
    • pp.83-94
    • /
    • 2020
  • An analytical formulation and solution process for the buckling analysis of porous magneto-electro-elastic functionally graded (MEE-FG) beam via different thermal loadings and various boundary conditions is suggested in this paper. Magneto electro mechanical coupling properties of FGM beam are taken to vary via the thickness direction of beam. The rule of power-law is changed to consider inclusion of porosity according to even and uneven distribution. Pores possibly occur inside FGMs due the result of technical problems that lead to creation of micro-voids in these materials. Change in pores along the thickness direction stimulates the mechanical and physical properties. Four-variable tangential-exponential refined theory is employed to derive the governing equations and boundary conditions of porous FGM beam under magneto-electrical field via Hamilton's principle. An analytical model procedure is adopted to achieve the non-dimensional buckling load of porous FG beam exposed to magneto-electrical field with various boundary conditions. In order to evaluate the influence of thermal loadings, material graduation exponent, coefficient of porosity, porosity distribution, magnetic potential, electric voltage and boundary conditions on the critical buckling temperature of the beam made of magneto electro elastic FG materials with porosities a parametric study is presented. It is concluded that these parameters play remarkable roles on the buckling behavior of porous MEE-FG beam. The results for simpler states are proved for exactness with known data in the literature. The proposed numerical results can serve as benchmarks for future analyses of MEE-FG beam with porosity phases.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • 제72권1호
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.281-301
    • /
    • 2017
  • In this disquisition, an exact solution method is developed for analyzing the vibration characteristics of magneto-electro-elastic functionally graded (MEE-FG) beams by considering porosity distribution and various boundary conditions via a four-variable shear deformation refined beam theory for the first time. Magneto-electroelastic properties of porous FG beam are supposed to vary through the thickness direction and are modeled via modified power-law rule which is formulated using the concept of even and uneven porosity distributions. Porosities possibly occurring inside functionally graded materials (FGMs) during fabrication because of technical problem that lead to creation micro-voids in FG materials. So, it is necessary to consider the effect of porosities on the vibration behavior of MEE-FG beam in the present study. The governing differential equations and related boundary conditions of porous MEE-FG beam subjected to physical field are derived by Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factor. An analytical solution procedure is used to achieve the natural frequencies of porous-FG beam supposed to magneto-electrical field which satisfies various boundary conditions. A parametric study is led to carry out the effects of material graduation exponent, porosity parameter, external magnetic potential, external electric voltage, slenderness ratio and various boundary conditions on dimensionless frequencies of porous MEE-FG beam. It is concluded that these parameters play noticeable roles on the vibration behavior of MEE-FG beam with porosities. Presented numerical results can be applied as benchmarks for future design of MEE-FG structures with porosity phases.

실험실 연구를 위한 엽상형 해조류의 생체량 추정 방법 (Estimating the Individual Dry Weight of Sheet Form Macroalgae for Laboratory Studies)

  • 김상일;윤석현
    • 해양환경안전학회지
    • /
    • 제25권2호
    • /
    • pp.244-250
    • /
    • 2019
  • 엽상형 해조류의 간접적인 건중량 추정을 위해 구멍갈파래(Ulva australis), 잎파래(Ulva linza), 개도박(Pachymeniopsis lanceolata), 방사무늬김(Pyropia yezoensis)의 형태적 특성과 생체량의 관계를 분석하였다. 시료는 2017년 2월부터 2018년 12월 까지 남해안 6곳에서 채집되었으며, 총 319개체가 분석에 사용되었다. 엽상형 해조류 네 종의 길이와 생체량에 대한 상대성장 지수는 0.28로 일반적인 1/4 (0.25) 지수법칙에 해당하였다. 네 종의 엽체의 표면적과 습중량은 각각 건중량과 유의한 선형관계를 보였으며, 건중량의 94 ~ 99%를 설명할 수 있었다. 이 결과는 엽상형 해조류의 표면적 또는 습중량을 통해 개체의 건중량을 매우 정확하게 추정할 수 있다는 것을 의미한다. 이 방법론은 실험실 연구에서 건중량을 직접 측정할 수 없을 때 쉽고 빠르게 활용할 수 있으며, 추가적으로 소요되는 시간과 비용을 절약할 수 있을 것이다.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • 제32권1호
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

미세균열의 길이 분포를 이용한 결의 평가 (Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths)

  • 박덕원
    • 암석학회지
    • /
    • 제24권3호
    • /
    • pp.165-180
    • /
    • 2015
  • 거창지역의 쥬라기 화강암에 대하여 결의 특성에 대한 분석을 실시하였다. 미세균열의 분포상은 박편의 확대사진(${\times}6.7$)에서 잘 확인되었다. 본 연구에서는 미세균열의 분포 특성을 표현하기 위하여 길이-누적 빈도 도표를 사용하였다. 여섯 방향의 도표를 밀도(${\rho}$)의 강도 순으로 배열하였다. 관계도에서 이들 도표들은 H2 < H1 < G2 < G1 < R2 < R1의 순서로 나타난다. 여섯 도표들 중에서, 하드웨이 2(H2)의 도표가 좌측의 최하위 영역을 차지한다. 반면에, 리프트 1(R1)의 도표가 우측의 최상위 영역을 차지한다. 두 도표의 곡선 형태는 밀도의 증가에 따라 균등분포에서 지수함수의 분포형으로 변화한다. 도표들의 전반적인 분포 특성은 지수 직선과 관련이 있는 지수(${\lambda}$)의 크기 및 선 oa의 길이에서 잘 확인되었다. 기울기(${\theta}$)의 값을 지배하는 지수의 크기는 수(N), 길이(L) 및 밀도와 같은 모수의 값과 반비례를 한다. 반면에, 선 oa의 길이는 위의 3개 모수의 값과 정비례를 한다. 도표의 배열 순과 관련이 있는 상기 미세균열의 모수들은 3번 결(H1 + H2) < 2번 결(G1 + G2) < 1번 결(R1 + R2)의 순서로 나타난다. 여섯 도표 사이에서는 점진적인 변화를 하는 분포 특성을 볼 수 있다. 도표의 배열 순은 결의 상대적인 강도를 지시한다. 한편 기울기, 지수, 밀도 및 선 oa의 길이와 같은 모수들을 H2 < H1 < G2 < G1 < R2 < R1의 순으로 배열하였다. 관계도에서는 부드러운 이차함수의 변화 곡선을 볼 수 있다. 밀도 그리고 상기한 모수들 사이의 상관도로부터, 멱법칙 함수를 따르는 공통적인 규칙성을 도출하였다. 마지막으로, 결에 대한 분석은 도표 그리고 미세균열의 모수 사이의 결합을 통하여 수행되었다. 이러한 유형의 결합은 결의 평가에 있어서 진보성에 기여한다.

AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구 (A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature)

  • 안정오;강대민;구양;심성보
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

추계학적 확률과정을 이용한 경사제 피복재의 시간에 따른 피해 경로 추정 (Estimation of Time-dependent Damage Paths of Armors of Rubble-mound Breakwaters using Stochastic Processes)

  • 이철응
    • 한국해안·해양공학회논문집
    • /
    • 제27권4호
    • /
    • pp.246-257
    • /
    • 2015
  • 피해 자료의 부족에 따른 불확실성 뿐만 아니라 시간의 진행에 따른 불확실성을 고려하기 위하여 추계학적 확률과정을 이용하여 시간에 따른 구조물의 피해 경로를 정량적으로 추적하였다. 누적피해도와 내구년수의 분포함수를 시간의 함수로 산정하여 추계학적 확률과정을 적용할 때 주의해야 하는 중요한 특성들을 제시하였다. 특히, 본 연구에서는 추계학적 확률과정을 경사제 피복재에 적용하여 시간에 따른 누적 피해도를 추적할 수 있는 방법을 제안하였다. 확률과정의 매개변수들을 추정하기 위하여 개발된 표본경로기법을 이용하여 경사제 피복재의 시간에 따른 누적 피해도가 포화거동을 따른다는 사실이 확인되었다. 또한 누적 피해도 산정시 중요한 역할을 하는 멱함수의 지수를 정량적으로 산정하여 경사제 피복재의 누적 피해도를 시간에 따라 추적하는 것이 가능했다. 마지막으로 한계수준을 다양하게 변화시키면서 파괴확률의 거동특성을 해석하였다.

다양한 크기와 주파수 그리고 감쇠를 갖는 상하방향 전신 충격진동에 대한 불편함 연구 (Study on Discomfort of Vertical Whole-body Shock Vibration Having Various Magnitudes, Frequencies and Damping)

  • 안세진;;유완석;정의봉
    • 한국자동차공학회논문집
    • /
    • 제15권2호
    • /
    • pp.50-57
    • /
    • 2007
  • Shocks are excited by impulsive forces and cause discomfort in vehicles. Current standards define means of evaluating shocks and predicting their discomfort, but the methods are based on research with a restricted range of shocks. This experimental study was designed to investigate the discomfort of seated subjects exposed to a wide range of vertical shocks. Shocks were produced from the responses of one degree-of-freedom models, with 16 natural frequencies (from 0.5 to 16 Hz) and four damping ratios (0.05 0.1, 0.2 and 0.4), to a hanning-windowed half-sine force inputs. Each type of shock was presented at five vibration dose values in the range $0.35\;ms^{-1.75}$ to $2.89\;ms^{-1.75}$. Fifteen subjects used magnitude estimation method to judge the discomfort of all shocks. The exponent in Stevens' power law, indicating the rate of growth in discomfort with shock magnitude, decreased with increasing fundamental frequency of the shocks. At all magnitudes, the equivalent comfort contours showed greatest sensitivity to shocks having fundamental frequencies in the range 4 to 12.5 Hz. At low magnitudes the variations in discomfort with the shock fundamental frequency were similar to the frequency weighting $W_b$ in BS 6841, but low frequency high magnitudes shocks produced greater discomfort than predicted by this weighting. At some frequencies, for the same unweighted vibration dose value, there were small but significant differences in discomfort caused by shocks having different damping ratios. The rate of increase in discomfort with increasing shock magnitude depends on the fundamental frequency of the shock. In consequence, the frequency-dependence of discomfort produced by vertical shocks depends on shock magnitude. For shocks of low and moderate discomfort, the current methods seem reasonable, but the response to higher magnitude shocks needs further investigation.