• Title/Summary/Keyword: power transfer capability

Search Result 186, Processing Time 0.028 seconds

Assessment of Total Transfer Capability Using IPLAN: An Application of UPFC for Total Transfer Capability Enhancement

  • Lee Byung Ha;Kim Jung-Hoon;Kwak No-Hong;Lee Woon-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.244-251
    • /
    • 2005
  • Power transfer capability has been recently highlighted as a key issue in many utilities. It is determined by the thermal stability, dynamic stability and voltage stability limits of generation and transmission systems. In particular, voltage stability affects power transfer capability to a great extent in many power systems. This paper presents a tool for determining total transfer capability from a static voltage stability viewpoint using IPLAN, which is a high level language used with the PSS/E program. The tool was developed so as to analyze static voltage stability and to determine the total transfer capability between different areas from a static voltage stability viewpoint by tracing stationary behaviors of power systems. A unified power flow controller (UPFC) is applied for enhancing total transfer capability between different areas from the viewpoint of static voltage stability. Evaluation of the total transfer capability of a practical KEPCO power system is performed from the point of view of static voltage stability, and the effect of enhancing the total transfer capability by UPFC is analyzed.

A Study on the Development of Power Transfer Capability Calculation Algorithm Considering Initial Maximum Power Transfer Capability (초기최대수송능력을 고려한 수송능력산정 알고리즘의 개발에 관한 연구)

  • Kim, Yong-Ha;Lee, Bum;Moon, Jung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2003
  • This paper presents a power transfer capability calculation algorithm considering initial maximum power transfer capability. In this method initial maximum power transfer capability is calculated first. Then, the initial value of active power outputs of generators is gotten for power transfer capability calculation. The proposed method is applied to IEEE-24 Reliability Test System and the results show the effectiveness of the method.

Calculation of Active Power Transfer Capability using Repeated Power Flow Program

  • Ham, Jung-Pil;Kim, Jung-Hoon;Lee, Byung-Ha;Won, Jong-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.12A no.1
    • /
    • pp.15-19
    • /
    • 2002
  • The power transfer capability is determined by the thermal, dynamic stability and voltage limits of the generation and transmission systems. The voltage stability depends on the reactive power limit and it affects the power transfer capability to a great extent. Then, in most load flow analysis, the reactive power limit is assumed as fixed, relatively different from the actual case. This paper proposes a method for determining the power transfer capability from a static voltage stability point of view using the IPLAN which is a high level language used with PSS/E program. The f-V curve for determining the power transfer capability is determined using Repeated Power Flow method. It Is assumed that the loads are constant and the generation powers change according to the merit order. The maximum reactive power limits are considered as varying similarly with the actual case and the effects of the varied maximum reactive power limits to the maximum power transfer capability are analyzed using a 5-bus power system and a 19-bus practical power system.

Transfer Capability Enhancement to Population Center Using VSC HVDC System (부하집중지로의 송전용량 증대를 위한 전압형 HVDC의 활용 방안)

  • Oh, Sea-Seung;Han, Byung-Moon;Cha, Jun-Min;Jang, Gil-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.236-241
    • /
    • 2006
  • This paper presents a transfer capability enhancement process using VSC HVDC system which can control active power as well as reactive power. The transfer capability is constrained by stability like voltage stability as well as thermal rating of power system components. Transfer capability of the power system limited by these constraints may be enhanced by reactive power control ability and active power flow control ability of the VSC HVDC system. To enhance the transfer capability of the system using VSC HVDC, selection of the HVDC installation site is performed. In this work, power zones which consist of major power plants and their sinks are identified using power tracing and distribution factor. Alternative route of major AC transmission line in the power zone is identified as VSC HVDC system.

Evaluation of Transfer Capability based on Load Supplying Capability Calculation using Nonlinear Primal-Dual Interior Point Method (비선형 주.쌍대내점법을 이용한 부하공급능력의 산정에 기반한 전력수송능력의 평가)

  • Jeong, Min-Hwa;Lee, Byeong-Jun;Song, Gil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.161-167
    • /
    • 2000
  • This paper presents a new methodology that can evaluate transfer capability of composite power systems from the adequacy point of view in power system planning stages. First of all, to evaluate practical load supplying capability, nonlinear optimization problems of maximum load supplying capability(MLSC) and economic load supplying capability(ELSC) are formulated and solved by nonlinear primal-dual interior point method. Here, physical constraints considered in the optimization problems are the limits of bus voltage, line overloading, and real & reactive power generation. Also, an evaluation method of transfer capability is presented based on margins calculated by the MLSC and ELSC. Especially, to evaluate transfer capability flexibly, simple indices such as expected MLSC, transfer capability margin, and power not supplied are respectively proposed by considering (N-1) line outage probability. Numerical results on IEEE RTS 24, IEEE 118, and IEEE 300 bus system show that the proposed algorithm is effective and useful for power system planning stages.

  • PDF

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

A Study on Location of STATCOM for Improvement of Total Transfer Capability and Analysis of Total Transfer Capability Considering Transient Stability (전체송전용량 향상을 위한 STATCOM 설비의 적용 위치 선정 및 과도안정도를 고려한 전체송전용량 분석)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • The power transfer capability has been recently highlighted as a key issue in many utilities with the power system more stressed and heavy loaded. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and many approaches for enhancement of the total transfer capability has been consistently performed. In this paper, a new transfer capability index to locate the STATCOM(Static Synchronous Compensator) effectively for enhancing the total transfer capability from a static voltage stability viewpoint is presented and it is applied to a small scale power system of IEEE 39-bus test system in order to show the effects of this index. In addition, the effect of transient stability as well as voltage stability to the total transfer capability when loads are increased is analyzed using this small scale power system.

Enhancement Power System Transfer Capability Program (PSTCP) To Calculate Total Transfer Capability in Power Systems (전력계통의 TTC(Total Transfer Capability) 산정을 위한 수송능력평가 프로그램 향상)

  • Kim, Sang-Ahm;Lee, Byung-Jun;Song, Kil-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper presents a sequential framework that calculates the total transfer capabilities of power transmission systems. The proposed algorithm enhances the Power System Transfer Capability Program (PSTCP) in conjunction with the Continuation Power Flow(CPF) that is used for steady-state voltage stability analysis and modified Arnoldi-Chebyshev method that calculates rightmost eigenvalues for small signal stability analysis. The proposed algorithm is applied to IEEE 39-bus test system to calculate TTC.

  • PDF

Probabilistic Approach to Time Varying Available Transfer Capability Calculation (확률론적 기법을 이용한 시변 가용송전용량 결정)

  • Shin, Dong-Jun;Kim, Kyu-Ho;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.533-539
    • /
    • 2005
  • According to NERC definition, Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity. To calculate Available Transfer Capability, accurate and defensible Total Transfer Capability, Capacity Benefit Margin and Transmission Reliability Margin should be calculated in advance. This paper proposes a method to quantify time varying Available Transfer Capability based on probabilistic approach. The uncertainties of power system and market are considered as complex random variables. Total Transfer Capability is determined by optimization technique such as SQP(Sequential Quadratic Programming). Transmission Reliability Margin with the desired probabilistic margin is calculated based on Probabilistic Load Flow analysis, and Capacity Benefit Margin is evaluated using LOLE of the system. Suggested Available Transfer Capability quantification method is verified using IEEE RTS with 72 bus. The proposed method shows efficiency and flexibility for the quantification of Available Transfer Capability.

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.