• Title/Summary/Keyword: power tower

Search Result 398, Processing Time 0.025 seconds

Analysis of Lightning Overvoltage on the Underground Power Cable at the Striking of Lightning Surge to the Combined Transmission Line (혼합송전선로에 뇌서지침입시 지중송전선로에서의 뇌과전압 해석)

  • Kim, Nam-Yeol;Lee, Jong-Beom;Jang, Seong-Hwan;Gang, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.502-509
    • /
    • 2002
  • In the analysis of lightning surges, transmission towers are usually simulated by ATPDraw. The modeling of transmission towers is an essential part of the traveling wave analysis of lightning surges in transmission lines. The tower model is applied to the 154kV transmission tower of which surge performance characteristics are measured Tower surge response is computed using nonuniform, single-phase line models for both transmission tower and ground wire. The overvoltage will effect to the underground transmission line. The underground cable is combined by duct and trefoil type, and the each arrester is placed on the leading-in tube and outgoing tube. This paper analyzed the effect of lightning overvoltage on the underground cable system.

An Application of a PLC to a Control System for a Dual Tower Dryer in Nuclear Power Plant (PLC를 이용한 원자력 발전소의 Dual Tower Dryer 운전 적용에 관한 연구)

  • Park, Jong-Beom;Yim, Wha-Yeong;Chog, Whang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.1-11
    • /
    • 2000
  • A control system using a programmable logic controller (PLC) has been developed for a dual tower dryer (DTD) in a canadian deuterium natural uranium reactor (CADND) type nuclear power plant. This system will replace the existing DTD control system which was implemented with mechanical timers and relays. The new control system makes it possible for an operator to perform more precise time and dew point control for the DTD, thanks to the high efficiency and flexibility of the PLC. The operational cost for the control system is much reduced compared to the existing system.

  • PDF

Structural Restoration for the Electric Power Transmission Tower Damaged by Foundation Settlements (기초침하에 의해 손상된 송전철탑 구조물의 구조성능개선)

  • Lee, Ho Beom;Park, Jong Kwon;Kim, Il Soo;Jang, Il Young;Song, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.83-93
    • /
    • 2013
  • Generally the capacities of electric power transmission tower's members are improved by increasing their stiffness nature through injection of grout or attachment of other structural stiffeners. Those are for upgrading their axial strength by fulfillment of proper materials into pipe members, increment of member dimension by addition of section, or a combination of the two. However the use of innovative and unusual procedures would be positively recommended for getting more stable state. It is that buckled members are replaced with lengthened and strengthened members. In providing the structural restoration procedures for the existing electric power transform tower whose main members have been damaged due to unequal foundation settlement, structural damage inspection works and numerical analyses for the damaged one and the restored one were done in detail at first. secondarily member-exchanging works using a newly-generated jacking system and strengthened members were achieved. This figures are to point clearly to inherent advantages attending the management of the towers.

Switching Surge Overvoltage and Air Clearance Design of 500 kV Transmission System (500 kV 송전계통의 개폐과전압과 공기절연거리 설계)

  • Shim, E.B.;Kwak, J.S.;Woo, J.W.;Han, K.S.;Kwon, D.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.644-646
    • /
    • 2005
  • The air clearance of the transmission tower is determined by the switching overvoltage of the system, and the insulator length is determined by contamination design. This paper described the switching overvoltage analysis result of 500 kV system and air clearance design. The overvoltage include fault initiation, fault clearing, closing and reclosing overvoltages. We illustrated the contamination design example, air clearance design of a tower considering swing angle of the conductor.

  • PDF

Overvoltage Analysis and Air Clearance Design of 345kV/154kV Transmission Tower (345kV/154kV 계통 과전압 해석과 공기절연간격 산정)

  • Shim, E.B.;Woo, J.W.;Kwak, J.S.;Yoon, S.H.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.449-451
    • /
    • 2001
  • This paper described the switching overvoltage analysis on the 345kV and 154kV transmission system by EMTP(Electromagnetic transient Program) for the enactment of current insulation design standards of KEPCO. The air clearance design of current transmission tower was reviewed and revised by the calculated result, considering swing angle for the each type of insulator string by the wind velocity.

  • PDF

New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines

  • Ghnimi, Said;Rajhi, Adnen;Gharsallah, Ali
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • In this paper, the theoretical and experimental characteristics of magnetic and electric fields in the vicinity of high voltage lines are investigated. To realize these measurements and calculations, we have developed some equations for two overhead power line configurations of 150 kV (single circuit, double circuit), based on Biot-savart law, image and Maxwell theories, in order to calculate the magnetic and electric fields. The measurements were done to a maximum distance from the tower of 50 m, at a height of 1m from the ground. These experiments take into consideration the real situations of the power lines and associated equipment. The experimental results obtained are near to that of the Biot-Savart theoretical results for a far distance from the tower; and for a distance close to the power line, the results from the image theory are in good agreement with the experimental results.

Metallurgical Failure Analysis on a Suspension Clamp in 154kV Electric Power Transmission Tower

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.237-240
    • /
    • 2021
  • Failure of a suspension clamp made of hot dip galvanized cast iron in 154kV transmission tower was investigated. Metallurgical analysis of a crack of the clamp was performed using a digital microscope, an optical microscope, and a scanning electron microscope. It was revealed that the crack surface was covered by continuous zinc layer. Distinctive casting skin was found underneath both the outer surface and crack surface. The result showed that pre-existing crack had been formed in the fabrication, and liquid metal embrittlement during hot dip galvanization may assist crack propagation.

The Study on the Characteristics of Puyeo district's Buddhist Temple Architechture in Sabi dynasty - Focus on the plot plan for a tower on Flatland - (사비시대 부여지역 가람건축의 특성에 관한연구 - 평지 1탑식 가람을 중심으로 -)

  • Lee, Dong-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • The main characteristic of one tower style temple on flatland, as a type of early buddhist temple, is to have been built on level ground near the capital city with their intent to be connected with power group in those days. Two kind of one tower temples on flatland had mostly been constructed: Wondang(longing temple) and National temple, and they greatly contributed to popularization of Buddhism. So, the purpose of this study is to analyze the examples of one tower temple plot planning made by centering around Puyeo district of Sabi dynasty, and in another aspects, examine the influence on our traditional temple architecture and the meaning of Korean traditional architecture, because it is the most important thing among Korean traditional architecture. This study is significant because we have researched in the documents and fruit of an excavation about one tower style temple in Puyeo district in Sabi dynasty, so it will be helpful in studying Buddhist temple architecture system in Puyeo district in Sabi dynasty.

Development of the Bus Duct Installation System for Wind Tower (풍력타워용 부스덕트 포설시스템 개발)

  • Rhee, Huinam;Lee, Joon Keun;Kim, Bong-Seok;Park, Seong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • A bus duct system for wind tower is introduced. A marine cable has been widely used in wind tower or various offshore structures. However, as the electric load capacity is increases, large number of cable lines must be used to cover the huge amount of electric capacities. Therefore, the installation of the cable lines becomes very difficult due to the heavy weight and volume of the cables. On the other hand, by using a single bus duct system line, the power capacity amount of 16 cables can be delivered with significantly compacted form. However, unlike flexible cables, the bus duct is relatively stiff which could generate the resonance phenomenon in the operating condition of the wind tower. In this study, the vibration characteristics of the bus duct are investigated and its long-term reliability during the life time of the wind tower is verified.

Resonance Analysis According to Initial Tower Design for Floating Offshore Wind Turbine (부유식 해상풍력발전기 타워의 초기 형상에 따른 공진 해석)

  • Kim, Junbae;Shin, Hyunkyoung
    • Journal of Wind Energy
    • /
    • v.9 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • To maximize power generation and reduce the construction cost of a commercial utility-grade wind turbine, the size of the wind turbine should be large. The initial design of the 12 MW University of Ulsan(UOU) Floating Offshore Wind Turbine(FOWT) was carried out based on the 5 MW National Renewable Energy Laboratory(NREL) offshore wind turbine model. The existing 5 MW NREL offshore wind turbines have been expanded to 12 MW UOU FOWT using the geometric law of similarity and then redesigned for each factor. The resonance of the tower is the most important dynamic responses of a wind turbine, and it should be designed by avoiding resonance due to cyclic load during turbine operations. The natural frequency of the tower needs to avoid being within the frequency range corresponding to the rotational speed of the blades, 1P, and the blade passing frequency, 3P. To avoid resonance, vibration can be reduced by modifying the stiffness or mass. The direct expansion of the 5 MW wind turbine support structure caused a resonance problem with the tower of the 12 MW FOWT and the tower length and diameter was adjusted to avoid a match of the first natural frequency and 3P excitation of the tower.