• Title/Summary/Keyword: power spectrum analysis

Search Result 894, Processing Time 0.023 seconds

POWER SPECTRUM ANALYSIS OF THE OMC1 IMAGE AT 1.1MM WAVELENGTH

  • Youn, So-Young;Kim, Sung-Eun
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.4
    • /
    • pp.93-99
    • /
    • 2012
  • We present a 1.1mm emission map of the OMC1 region observed with AzTEC, a new large-format array composed of 144 silicon-nitride micromesh bolometers, that was in use at the James Clerk Maxwell Telescope (JCMT). These AzTEC observations reveal dozens of cloud cores and a tail of filaments in a manner that is almost identical to the submillimeter continuum emission of the entire OMC1 region at 450 and $850{\mu}m$. We perform Fourier analysis of the image with a modified periodogram and the density power spectrum, which provides the distribution of the length scale of the structures, is determined. The expected value of the periodogram converges to the resulting power spectrum in the mean squared sense. The present analysis reveals that the power spectrum steepens at relatively smaller scales. At larger scales, the spectrum flattens and the power law becomes shallower. The power spectra of the 1.1mm emission show clear deviations from a single power law. We find that at least three components of power law might be fitted to the calculated power spectrum of the 1.1mm emission. The slope of the best fit power law, ${\gamma}{\approx}-2.7$ is similar to those values found in numerical simulations. The effect of beam size and the noise spectrum on the shape and slope of the power spectrum are also included in the present analysis. The slope of the power law changes significantly at higher spatial frequency as the beam size increases.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Seismic Fragility Analysis of NPP Components for High Frequency Ground Motions (고진동수 지진동에 대한 원전 기기의 지진취약도 분석)

  • 최인길;서정문;전영선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.110-117
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large high frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

  • PDF

Wind power spectra for coastal area of East Jiangsu Province based on SHMS

  • Wang, Hao;Tao, Tianyou;Wu, Teng
    • Wind and Structures
    • /
    • v.22 no.2
    • /
    • pp.235-252
    • /
    • 2016
  • A wind velocity power spectrum (WVPS) with high fidelity is extremely important for accurate prediction of structural buffeting response. WVPS heavily depends on the geographical locations, local terrains and topographies. Hence, field measurement of wind characteristics may be the unique way to obtain the accurate WVPS for a specific region. In this paper, a systematic analysis and discussions of existing WVPSs were performed. Six recorded strong wind data from the structural health monitoring systems (SHMS) of Runyang Suspension Bridge (RSB) and Sutong Cable-stayed Bridge (SCB) in Jiangsu Province of China were selected for analysis. The measured and pre-processed wind velocity data was first transformed from time domain to frequency domain to obtain the measured spectrum. The spectrum for each strong wind was then fitted using the nonlinear least square method and compared with both the fitted spectrum from statistical analysis and the recommended spectrum in specifications. The modified Kaimal spectrum was proved to be the "best" choice for the coastal area of East Jiangsu Province. Finally, a suitable WVPS formula fit for the coastal area of East Jiangsu Province was presented based on the modified Kaimal spectrum. Results in this study provide a more accurate and reliable WVPS for wind-resistant design of engineering structures in the coastal area of East Jiangsu Province.

A NEW METHOD FOR NORTH-SOUTH ASYMMETRY OF SUN SPOT AREA ANALYSIS

  • Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.261-268
    • /
    • 2007
  • We have studied the temporal variation in the North-South asymmetry of the sunspot area during the period from 1874 to 2007. Though the 9-year periodicity is commonly reported, shorter periodicities is still under study. We employ the cepstrum analysis method to analyze the noisy power spectrum of the North-South asymmetry. We demonstrate that the cleaned power spectrum shows reduction of the spurious back-ground noise level. Some of short period peaks in the power spectrum disappear after deconvolution. It should be, however, pointed out that power spectrum might look less noisy because of a filtering process during deconvolution. We conclude by pointing out that a more sophisticate filtering algorithm is required to produce a precise and reliable periodicity estimate.

Seismic Analysis of Power Plant Piping System (발전소 배관계의 내진해석)

  • Kim, Jeong-Hyun;Lee, Young-Shin;Kim, Yeon-Whan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.480-485
    • /
    • 2011
  • In this study, the seismic analysis of power plant piping system was performed using finite element model. This study was performed by ANSYS 12.1. For qualification of power plant piping system, the response spectrum analysis was performed using the given operating basis earthquake(OBE) and safe shutdown earthquake(SSE) floor response spectrum. The maximum stresses of power plant piping system were 166 MPa under OBE condition and 281 MPa under SSE condition. Thus, it can shown that the structural integrity of tpower plant piping system has a stable structure for seismic load conditions.

  • PDF

Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component (스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가)

  • 최인길;서정문;전영선;이종림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

A Study on the Spectrum Analyzing of Internal Leak in Valve for Power Plant Using Acoustic Emission Method (음향방출법에 의한 발전용 밸브내부 누설의 스펙트럼분석 연구)

  • Lee, Sang-Guk;Lee, Sun-Ki;Lee, Jun-Shin;Sohn, Seok-Man
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.694-699
    • /
    • 2004
  • The purpose of this study is to estimate the availability of acoustic emission method to the internal leak of the valves at nuclear power plants. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. From the comparison of the background noise data with the experimental results as to relation between leak flow and acoustic signal, the minimum leak flow rates that can be detected by acoustic signal was suggested. When the background levels are higher than the acoustic signal, the method described below was considered that the analysis the remainder among the background noise frequency spectrum and the acoustic signal spectrum become a very useful leak detection method. A few experimental examples of the spectrum analysis that varied the background noise characteristic were given.

  • PDF

Recognition of Stable State of EEG using Wavelet Transform and Power Spectrum Analysis (웨이브렛 변환과 파워 스펙트럼 분석을 이용한 EEG의 안정 상태 인식에 관한 고찰)

  • Kim, Young-Seo;Kil, Se-Kee;Lim, Seon-Ah;Min, Hong-Ki;Her, Woong;Hong, Seung-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.879-880
    • /
    • 2006
  • The subject of this paper is to recognize the stable state of EEG using wavelet transform and power spectrum analysis. An alpha wave, showed in stable state, is dominant wave for a human EEG and a beta wave displayed excited state. We decomposed EEG signal into an alpha wave and a beta wave in the process of wavelet transform. And we calculated each power spectrum of EEG signal, an alpha wave and a beta wave using Fast Fourier Transform. We recognized the stable state by making a comparison between power spectrum ratios respectively.

  • PDF

Vocal Tract Normalization Using The Power Spectrum Warping (파워 스펙트럼 warping을 이용한 성도 정규화)

  • Yu, Il-Su;Kim, Dong-Ju;No, Yong-Wan;Hong, Gwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.215-218
    • /
    • 2003
  • The method of vocal tract normalization has been known as a successful method for improving the accuracy of speech recognition. A frequency warping procedure based low complexity and maximum likelihood has been generally applied for vocal tract normalization. In this paper, we propose a new power spectrum warping procedure that can be improve on vocal tract normalization performance than a frequency warping procedure. A mechanism for implementing this method can be simply achieved by modifying the power spectrum of filter bank in Mel-frequency cepstrum feature(MFCC) analysis. Experimental study compared our Proposal method with the well-known frequency warping method. The results have shown that the power spectrum warping is better 50% about the recognition performance than the frequency warping.

  • PDF