• Title/Summary/Keyword: power spectra

Search Result 636, Processing Time 0.032 seconds

Remote Sensing of Atmospheric Trace Species using Multi Axis Differential Optical Absorption Spectroscopy (Multi Axis DOAS를 이용한 대기미량 물질 원격 측정)

  • Lee Chul-Kyu;Kim Young-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.2
    • /
    • pp.141-151
    • /
    • 2006
  • UV-visible absorption measurement techniques using several horizone viewing directions in addition to the traditional zenith-sky pointing have been recently developed in ground-based remote sensing of atmospheric constituents. The spatial distribution of various trace gases close to the instrument can be derived by combing several viewing directions. Multi-axis differential optical absorption spectroscopy (MAX-DOAS) technique, one of the remote sensing techniques for air quality measurements, uses the scattered sunlight as a light source and measures it at various elevation angles (corresponding to the viewing directions) by sequential scanning with a stepper motor. A MAX-DOAS system developed by GIST/ADEMRC has been applied to measuring trace gases in urban air and plumes of the volcano and fossil fuel power plant in January, May, and October 2004, respectively. MAX-DOAS spectra were analyzed to identify and quantify $SO_2,\;NO_2,\;BrO,\;and\;O_4$ (based on Slant Column Densities, SCD) in the urban air, volcanic plume, and fossil fuel power plant utilizing theirs specific structured absorption features in the UV-visible region. Vertical scan through the multiple elevation angles was performed at different directions perpendicular to the plume dispersion to retrieve cross-sectional distribution of $SO_2\;or\;NO_2$ in the plumes of the volcano and fossil fuel power plant. Based on the estimated cross sections of the plumes the mixing ratios were estimated to 580 $SO_2$ ppbv in the volcanic Plume, and 337 $NO_2\;and\;227\;SO_2$ ppbv in the plume of the fossil fuel power plant, respectively.

p-Type AlN epilayer growth for power semiconductor device by mixed-source HVPE method (혼합소스 HVPE 방법에 의한 전력 반도체 소자용 p형 AlN 에피층 성장)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Kim, Sang Woo;Jeon, Injun;Ahn, Hyung Soo;Yang, Min;Yi, Sam Nyung;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.83-90
    • /
    • 2019
  • In this paper, Mg-doped AlN epilayers for power semiconductor devices are grown by mixed-source hydride vapor phase epitaxy. Magnesium is used as p-type dopant material in the grown AlN epilayer. The AlN epilayers on the GaN-templated sapphire substrate and GaN-templated-patterned sapphire substrate (PSS), respectively, as the base substrates for device application, were selectively grown. The surface and the crystal structures of the AlN epilayers were investigated by field emission scanning electron microscopy (FE-SEM) and high-resolution-X-ray diffraction (HR-XRD). From the X-ray photoelectron spectroscopy (XPS) and Raman spectra results, the p-type AlN epilayers grown by using the mixed-source HVPE method could be applied to power devices.

Assessment of Input Motion for the Seismic Analysis of Nuclear Structures (원자력구조물(原子力構造物)의 지진해석(地震解析)에 사용(使用)되는 입력운동(入力運動)에 대한 고찰(考察))

  • Park, Hyung Ghee;Yu, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.91-99
    • /
    • 1985
  • The acceleration levels and durations of seismic inputs for nuclear power plant design are surveyed. Among those inputs, two artificial acceleration time histories with same acceleration level and duration are selected and their characteristics are studied by calculating response spectra and spectrum intensity. The selected time histories which have the duration of 24 sec. satisfy the design response spectra of US Nuclear Regulatory Commission Regulatory Guide 1. 60. One of the selected time histories is improved to have the duration of 15 sec. without significant changes in the other characteristics. A case study of a plane model with 3 lumped masses is done using three time histories, i.e, two selected and one improved time histories. It is found that the improved curve gives almost the same results as the original one and reduces the computer time by about half, whereas two selected time histories give the results with same trend but much different magnitudes each other. It is claimed, however, that the improved time history is not the optimal one, but very economical in practical applications.

  • PDF

Analysis of Characteristics of Seismic Source and Response Spectrum of Ground Motions from Recent Earthquake near the Backryoung Island (최근 백령도해역 발생지진의 지진원 및 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.274-281
    • /
    • 2011
  • We analysed ground motions form Mw 4.3 earthquake around Backryoung Island for the seismic source focal mechanism and horizontal response spectrum. Focal mechanism of the Backryoung Islands area was compared to existing principal stress orientation of the Korean Peninsula and horizontal response spectrum was also compared to those of the US NRC Regulatory Guide (1.60) and the Korean National Building Code. The ground motions of 3 stations, including vertical, radial, and tangential components for each station, were used for grid search method of moment tensor seismic source. The principal stress orientation from this study, ENE-WSW, is consistent fairly well with that of the Korean Peninsula. The horizontal response spectrum using 30 observed ground motions analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). Response spectrum of 30 horizontal ground motions were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that the horizontal response spectrum revealed higher values for frequency bands above 3 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed higher values for the frequency bands below 0.8 second than the Korean Standard Response Spectrum (SD soil condition). However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the higher frequency bands.

Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates

  • Li, Song-Mei;Kwon, Bong-Joon;Kwack, Ho-Sang;Jin, Li-Hua;Cho, Yong-Hoon;Park, Young-Sin;Han, Myung-Soo;Park, Young-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.121-121
    • /
    • 2010
  • ZnO is a promising material for the application of high efficiency light emitting diodes with short wavelength region for its large bandgap energy of 3.37 eV which is similar to GaN (3.39 eV) at room temperature. The large exciton binding energy of 60 meV in ZnO provide provides higher efficiency of emission for optoelectronic device applications. Several ZnO/ZnMgO multiple quantum well (MQW) structures have been grown on various substrates such as sapphire, GaN, Si, and so on. However, the achievement of high quality ZnO/ZnMgO MQW structures has been somehow limited by the use of lattice-mismatched substrates. Therefore, we propose the optical properties of ZnO/ZnMgO multiple quantum well (MQW) structures with different well widths grown on lattice-matched ZnO substrates by molecular beam epitaxy. Photoluminescence (PL) spectra show MQW emissions at 3.387 and 3.369 eV for the ZnO/ZnMgO MQW samples with well widths of 2 and 5 nm, respectively, due to the quantum confinement effect. Time-resolved PL results show an efficient photo-generated carrier transfer from the barrier to the MQWs, which leads to an increased intensity ratio of the well to barrier emissions for the ZnO/ZnMgO MQW sample with the wider width. From the power-dependent PL spectra, we observed no PL peak shift of MQW emission in both samples, indicating a negligible built-in electric field effect in the ZnO/$Zn_{0.9}Mg_{0.1}O$ MQWs grown on lattice-matched ZnO substrates.

  • PDF

RF magnetron sputtering법으로 성장시킨 ZnO 박막의 광특성과 grain size의 영향에 관한 연구

  • 김경국;박성주;정형진;최원국
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.117-117
    • /
    • 1999
  • 최근 광소자와 더불어 발전과 더불어 고효율의 새로운 광소자에 대한 수요가 증가되고 있다. ZnO는 이러한 특성을 가진 재료중에 한가지로서 최근 들어 그 가능성에 대한 연구가 활발히 이루어지고 있다. 특히 상온에서 exciton binding energy가 다른 재료보다 큰 60meV로 고효율의 blue, UV 발광이 가능한 재료로 알려져 있다. 본 연구에서도 광소자로서 ZnO를 활용하기 위해서 RF magnetron sputtering법을 이용하기 위하여 광특성의 향상에 목적을 두고 연구하였다. ZnO 박막은 RF magnetron sputtering법을 이용하여 sapphire (0001) 기판위에 성장시켰다. RF power는 60W에서 120W까지 변화시켰고 박막의 성장온도는 55$0^{\circ}C$$600^{\circ}C$로 변화시켰으며, 박막의 성장시간은 60분, ZnO target과 기판과의 거리는 4.5cm로 하여 성장시켰다. 성장된 ZnO 박막은 XRD $\theta$-rocking scan 측정을 통해서 박막의 C-축 배향성과 RBS channeling를 이용하여 ZnO 박막의 epitaxial 성장 정도를 측정하였다. 박막의 상온 발광 특성은 He-Cd laser를 사용한 photoluminescence spectra로 측정하였다. 또한 표면의 morphology는 atomic force microscope(AFM)를 이용하여 관찰하였으며 transmission electron microscopy(TEM)을 사용하여 ZnO박막의 단면적을 관찰함으로서 grain의 성장과 광특성 및 결정성과의 영향에 대해서 연구하였다. ZnO 박막의 성장온도 55$0^{\circ}C$에서 RF power를 60W에서 120W까지 변화시킬 경우 XRD $\theta$-rocking peak의 반치폭이 0.157$^{\circ}$에서 0.436$^{\circ}$까지 변화하였고 80W에서 최소값을 가졌으며 in-plain에 대한 XRD 측정 결과 ZnO 박막의 성장은 sapphire 기판에 대해서 30$^{\circ}$회전되어 성장된 것으로 알 수 있었으며 이는 ZnO [100]∥ Al2O3[110]의 관계를 갖는다는 것을 나타낸다. 광특성의 측정 결과인 PL peak의 반치폭은 133.67meV에서 89.5meV까지 변화함을 알 수 있었고 80W에서 최대값을 가졌으며 이는 RF power의 변화에 따른 결정성의 변화와는 반대되는 현상임을 알 수 있었다. 그러나 성장온도 $600^{\circ}C$일때에는 XRD $\theta$-rocking peak의 반치폭이 0.129$^{\circ}$로 결정성이 우수한 박막임을 확인할 수 있었고 PL peak의 반치폭 또한 Ar과 O2의 비율에 따라 76.32meV에서 98.77meV로 광특성도 우수한 것으로 나타났다. RBS channeling 결과 55$0^{\circ}C$에서는 $\chi$min값이 50~60%였으나 $600^{\circ}C$일 때에는 $\chi$min값이 4~5%로 박막이 epitaxial 성장을 하였다는 것을 알 수 있었다. 결정성과 광특성과의 연관성을 알아보기 위해 TEM을 이용한 박막의 cross section image를 관찰한 결과 광특성이 우수한 시편일수록 grain의 크기가 큰 것으로 나타났고 결정성이 우수한 시편의 경우에서는 XRD분석 결과에서처럼 C-축배향성이 우수한 것을 확인할 수 있었다. 이상의 결과로부터 RF magnetron sputtering 법으로 광특성이 우수한 양질의 ZnO박막 성장이 가능하였다는 것을 알 수 있었으며 광소자로써의 가능성을 확인 할 수 있었다.

  • PDF

HVPE growth of Mg-doped AlN epilayers for high-performance power-semiconductor devices (고효율 파워 반도체 소자를 위한 Mg-doped AlN 에피층의 HVPE 성장)

  • Bae, Sung Geun;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Jeon, Hunsoo;Kim, Kyoung Hwa;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • AlN is a promising material for wide band gap and high-frequency electronics device due to its wide bandgap and high thermal conductivity. AlN has advantages as materials for power semiconductors with a larger breakdown field, and a smaller specific on-resistance at high voltage. The growth of a p-type AlN epilayer with high conductivity is important for a manufacturing an AlN-based applications. In this paper, Mg doped AlN epilayers were grown by a mixed-source HVPE. Al and Mg mixture were used as source materials for the growth of Mg-doped AlN epilayers. Mg concentration in the AlN was controlled by modulating the quantity of Mg source in the mixed-source. Surface morphology and crystalline structure of AlN epilayers with different Mg concentrations were characterized by FE-SEM and HR-XRD. XPS spectra of the Mg-doped AlN epilayers demonstrated that Mg was doped successfully into the AlN epilayer by the mixed-source HVPE.

Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer (CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구)

  • Park, So-Hyun;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • We have investigated the effect of strong p-type organic semiconductor $F_4$-TCNQ-doped CuPc hole transport layer on the performance of p-i-n type bulk heterojunction photovoltaic device with ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5 wt%)/CuPc:C60(blending ratio l:l)/C60/BCP/LiF/Al, architecture fabricated via vacuum deposition process, and have evaluated the J-V characteristics, short-circuit current ($J_{sc}$), open-circuit voltage($V_{oc}$), fill factor(FF), and power conversion efficiency(${\eta}_e$) of the device. By doping $F_4$-TCNQ into CuPc hole transport layer, increased absorption intensity in absorption spectra, uniform dispersion of organic molecules in the layer, surface uniformity of the layer, and enhanced injection currents improved the current photovoltaic device with power conversion efficiency(${\eta}_e$) of 0.16%, which is still low value compared to silicone solar cell indicating that many efforts should be made to improve organic photovoltaic devices.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Psychological and Physiological Responses to the Rustling Sounds of Korean Traditional Silk Fabrics

  • Cho, Soo-Min;Yi, Eun-Jou;Cho, Gil-Soo
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.450-456
    • /
    • 2006
  • The objectives of this study were to investigate physiological and psychological responses to the rustling sound of Korean traditional silk fabrics and to figure out objective measurements such as sound parameters and mechanical properties determining the human responses. Five different traditional silk fabrics were selected by cluster analysis and their sound characteristics were observed in terms of FFT spectra and some calculated sound parameters including level pressure of total sound (LPT), Zwicker's psychoacoustic parameters - loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z), and sound color factors such as ${\Delta}L\;and\;{\Delta}f$. As physiological signals, the ratio of low frequency to high frequency (LF/HF) from the power spectrum of heart rate variability, pulse volume (PV), heart rate (HR), and skin conductance level (SCL) evoked by the fabric sounds were measured from thirty participants. Also, seven aspects of psychological state including softness, loudness, sharpness, roughness, clearness, highness, and pleasantness were evaluated when each sound was presented. The traditional silk fabric sounds were likely to be felt as soft and pleasant rather than clear and high, which seemed to evoke less change of both LF/HF and SCL indicating a negative sensation than other fabrics previously reported. As fluctuation strength(Z) were higher and bending rigidity (B) values lower, the fabrics tended to be perceived as sounding softer, which resulted in increase of PV changes. The higher LPT was concerned with higher rating for subjective loudness so that HR was more increased. Also, compression linearity (LC) affected subjective pleasantness positively, which caused less changes of HR. Therefore, we concluded that such objective measurements as LPT, fluctuation strength(Z), bending rigidity (B), and compression linearity (LC) were significant factors affecting physiological and psychological responses to the sounds of Korean traditional silk fabrics.