• Title/Summary/Keyword: power shutdown

Search Result 301, Processing Time 0.036 seconds

Fully Digital Controlled Power Supply for PLS (전 디지털제어 전원장치)

  • Ha, Ki-Man;Kim, Y.S.;Lee, S.K.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1011-1015
    • /
    • 2005
  • Fully digital controlled 20-bit magnet power supplies have been developed and successfully tested for closed orbit correction of PLS(Pohang Light Source). The new digital power supply has used fiber optics for 25kHz switching of IGBT drivers, and implemented DSP, ADC, Interlock, DCCT cards in a compact 3U-sized 19" chassis. Input/Output low-pass filters suppress harmonics of 60Hz line frequency and switching frequency noise effectively. Overall performance of the power supplies have been demonstrated as +/- 2ppm short-term stability(<1 min), and +/- 10ppm long-term stability(<36 hours). All the existing 12-bit 70 power supplies for vertical correction magnets will be replaced with new digital power supplies during 2005 summer shutdown period. In this paper, we will describe the hardware structure and control method of the digital power supply and the experimental results will be shown.

  • PDF

Evaluation the Impact of Installing a Isolation Valve on Condensate System of Nuclear Power Plan (원자력발전소 복수기 수실 차단밸브 설치 영향 평가)

  • Lee, Sun-Ki
    • Journal of Industrial Convergence
    • /
    • v.18 no.4
    • /
    • pp.15-21
    • /
    • 2020
  • Because there are no isolation valves in condensate system of nuclear power plants, circulating water pump was shutdown for the condenser repair. When circulating water pump was shutdown, power plant output decreased about 45%. These output decreasing can minimize by establishing isolation valves. In this paper, evaluated effect to flow conditions change of condensate system, structural integrity of system, condenser pressure of in case of establish isolation valves to condensate system. Results of the evaluation, the flow rate due to the installation of the isolation valve decreased 0.3% when the valve was fully opened and 4.5% when fully closed. In addition, it was found that the vacuum degree of the condenser decreased with decreasing flow rate, but the integrity of the system was maintained.

Partial Discharge Measurement of Power Cables for Nuclear Power Plant (원자력발전소 전력케이블 부분방전 진단 사례)

  • Ha, Che-Wung;Ju, Kwang-Ho;Lim, Woo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1632-1638
    • /
    • 2011
  • Electric cables are one of the most important components in a nuclear power plant since they provide the power needed to operate electrical equipment. Despite their importance, cables typically receive little attention since they are considered passive, long-lived components that have been very reliable over the years when subjected to the environmental conditions for which they were designed. The operating experience reveals that a defect of the insulator or poor construction causes the initial failure of cable. However, the number of cable failures increase with plant aging, and these cable failures are occurring within the plants' 40-year licensed period. These cable failures have resulted in plant transients, shutdown, loss of safety functions or redundancy, entries into limiting conditions for operation, and challenges for plant operators. Therefore, diagnosis of MV cable installed in NPPs has become one of the most urgent issues in recent years. In accordance with PSR, condition maintenance for cables is also continuously required. Recently, HFPD tests have been widely performed to diagnose cable in the transmission and distribution cable system. However, on-line HFPD wasn't used in the NPPs because of the danger of plant shutdown, measurement sensitivity and application problems, etc. In this paper, HFPD measurement with portable device was performed to evaluate the integrity of the 4.16kV & 13.8kV cable lines. The test results show that HFPD is highly attractive to the diagnosis of MV cables in NPP by high detection sensitivity on-site.

Study on the Fire Hazard and Risk Analysis Derived from the Plant Configuration Change During the Shutdown Period at Nuclear Power Plants

  • Jee Moon-Hak;Hong Sung-Yull;Sung Chang-Kyung;Jung Hyun-Jong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.547-555
    • /
    • 2003
  • Fire hazard and risk analysis at Nuclear Power Plants is implemented on the basis of the normal operational configuration. This steady configuration, however, can be changed due to the temporary displacement of equipment, electric cable and irregular movement of workers through the fire compartments when the on-line maintenance is processed during the power operation mode or the scheduled outage mode for the refueling. With the consequence of this configuration change, the fire analysis condition and the evaluation result will be different from those that were analyzed based on the steady configuration. In this context, at this paper, the general items for the reassessment are categorized when the configuration has changed. The contemporary zone models for the detail fire analysis are also illustrated for their application for each classified condition.

Verification of Hybrid Real Time HVDC Simulator in Cheju-Haenam HVDC System

  • Yang Byeong-Mo;Kim Chan-Ki;Jung Gil-Jo;Moon Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • In this paper a Hybrid Real Time HVDC Simulator fur both operator Training and Researching in the Cheju-Haenam HVDC System is proposed and its performance is studied by means of RTDS (Real Time Digital Simulator), EMTDC (Electro-Magnetic Transients system for DC), PSS/E (Power System Simulator for Engineering), and experienced scenarios. The objective of this paper is to represent the strategy in development for KEPCO's hybrid HVDC simulator for the Cheju-Haenam HVDC system. This simulator consists of two DC stations, DC cables, external digital/analog controllers, monitoring systems and control desk for education, and AC networks. Its suitability for operator's education is tested during startup/shutdown and normal state operations. Dynamic performances of it are also verified.

Development of an Accident Sequence Precursor Methodology and its Application to Significant Accident Precursors

  • Jang, Seunghyun;Park, Sunghyun;Jae, Moosung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.313-326
    • /
    • 2017
  • The systematic management of plant risk is crucial for enhancing the safety of nuclear power plants and for designing new nuclear power plants. Accident sequence precursor (ASP) analysis may be able to provide risk significance of operational experience by using probabilistic risk assessment to evaluate an operational event quantitatively in terms of its impact on core damage. In this study, an ASP methodology for two operation mode, full power and low power/shutdown operation, has been developed and applied to significant accident precursors that may occur during the operation of nuclear power plants. Two operational events, loss of feedwater and steam generator tube rupture, are identified as ASPs. Therefore, the ASP methodology developed in this study may contribute to identifying plant risk significance as well as to enhancing the safety of nuclear power plants by applying this methodology systematically.

A Study on the method of Margin Management for New Nuclear Power Plant (신규원전 여유도 관리 방안 연구)

  • Park, You-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.151-152
    • /
    • 2018
  • In the domestic nuclear power industry, concern about safety of nuclear power plants is continuously increased with the Fukushima nuclear power plant accident. In order to enhance the safety of nuclear power plants, it is important to ensure that the power plants are operating with proper margin within the original design bases. Margin management is the process of ensuring that the NPP designer and operator are aware of the physical and operating limits, and potential and probability of failure, for each component in the plant. All components are subject to margin considerations, but the most important components by scope and attention are those related to safety-related systems and NPP safe shutdown.

  • PDF

Analyzing Stability of Jeju Island Power System with Modular Multilevel Converter Based HVDC System

  • Quach, Ngoc-Thinh;Lee, Do Heon;Kim, Ho-Chan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • This paper proposes the installation of a new modular multilevel converter based high-voltage direct current (MMC-HVDC) system to connect between mainland and Jeju island power systems in Korea in 2020. The purpose is to combine with two old line-commutated converters (LCC)-based HVDC system to achieve a stability of the Jeju island power system. The operation of the overall system will be analyzed in three cases: (i) wind speed is variable, (ii) either one of the LCC-HVDC systems is shutdown because of a fault or overhaul, (iii) a short circuit fault occurs at the mainland side. The effectiveness of the proposed control method is confirmed by the simulation results based on a PSCAD/EMTDC simulation program.

Modeling and Simulation for Dynamic Behaviors of SOVR for Electric Power Plant (P&S를 활용한 발전용 SOVR의 모델링과 동특성 해석)

  • 노태정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.203-203
    • /
    • 2000
  • The P&S(Power Plant Simulation System) is a powerful simulation software system for the dynamic behavior of power plants. The P&S module libraries provide plant models with higher flexibility of dynamic simulations for process and control designs. The P&S software was effectively available for PCS based on Linux and modem workstations based on Unix. The P&S was applied for simulating the dynamic behaviors of the SOVR(Supercritical Once-Through Variable Pressure Reheater) according to the operations such as stan-up, shutdown, load following, load change and trip in order to obtain an optimal operation procedure for Unit 5/6 of Taeahn fossil power plant consisted of SOVRs and steam turbines.

  • PDF

Integrity Evaluation of Ice Plugged Pipes Applied on Short Jacket

  • Park, Yeong-Don;Son, Geum-Su
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2002
  • In special industrial fields such 3s nuclear power plants and chemical plants, it is often necessary to repair system components without plant shutdown or drainage of system having many piping structures which may have hazardous or expensive fluid. A temporary ice plugging method for blocking internal flow is considered as a useful method in that case. According to the pipe freezing guideline of the nuclear power plant, the length of a freezing jacket must be longer than twice of the pipe diameter. However, for applying the ice plugging to short pipes which do not have enough freezing length because of geometrical configuration, it is inevitable to use shorter jacket less than twice of the pipe diameter. In this study, the integrity evaluation for short pipes in the nuclear power plant Is conducted by an experiment and the finite element analysis. From the results, the ice plugging process in short pipes can be safely carried out without any plastic deformation and fracture.