• Title/Summary/Keyword: power plant modeling

Search Result 375, Processing Time 0.024 seconds

Performance Evaluation of Small Dampers Using SMG Fluid (SMG 유체를 이용한 소형댐퍼의 성능평가)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.211-219
    • /
    • 2019
  • In this study, SMG(Smart Material with Grease) was developed, which was improved the precipitation minute particle in grease during long term standstill. Also, small-sized cylinder damper equipped with an electromagnet in a piston was developed for using a performance evaluation of the damper with SMG and the dynamic load test, and damping force using Power model and Bingham model was derived in order to compare to the result of that of the damper. The data obtained from the dynamic load test were analyzed and plotted, and then a dynamic range was calculated to evaluate the usability of the damper with SMG. The performance of the damper with SMG was compared to the damping forse derived from the Power and Bingham model. The result of this evaluation shown that the usability of SMG damper was demonstrated by this test as a semi-active controlling equipment of small-sized damper.

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

A SD approach to the Efficiency Improvement of Electric Power Industry in Korea -Focused on the Nuclear Industry (국내 전력산업의 효율성 제고모형에 대한 SD 모형 연구 - 원자력산업을 중심으로)

  • Heo, Hoon;Lee, Myung-Ho
    • Korean System Dynamics Review
    • /
    • v.4 no.2
    • /
    • pp.153-171
    • /
    • 2003
  • In this study, we tried to build a model which can deal with the efficient and effective operation of electric power industry, especially focused on the nuclear industry. Here, SD(system Dynamics) approach is used to visualize the underlying phenomenon of the nuclear power industry. SD is a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems, The span of SD applications has grown extensively and now encompasses work in corporate planning and policy design, public management and policy, biological and medical modeling, energy and the environment. Recently, according to the report from KEPCO(Korea Electric Power Corporation), they are considering delaying a new power plant construction. It may be based upon business fluctuation downsized from Korean economic crisis in 1997 and freezing of construction funds due to unstable foreign exchange rate. At this point, we need desperately a kind of strategic model that would contribute to cope with the current business situation, energy generation, Production, and resulting Pollution. Specifically, this model, using SD approach, starts with the detailed drawing of influence diagram, which describes those relevant key points on nuclear power generation systems in electric power industry of Korea. These include such (actors as the operation of nuclear industry and parameters related to the decision making for business policy. Based upon the above-mentioned influence diagram drawn, we developed SD simulation model to evaluate and analyze strategic management of KBPCO. Based on our analysis, we could demonstrate how simulation model can be applied to the real electric power generation in Korea.

  • PDF

A SD approach to the Efficiency Improvement of Electric Power Industry in Korea: Focused on the Nuclear Industry (시스템 다이내믹스(SD)에 의한 국내 전력산업의 효율성 제고에 관한 연구: 원자력산업을 중심으로)

  • Lee, Myoung-Ho;Lee, Hee-Sang;Jang, In-Sung;Choi, Bong-Sik;Huh, Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • In this study, we tried to build a model which can deal with the efficient and effective operation of electric power industry, especially focused on the nuclear industry. Here, SD (System Dynamics) approach is used to visualize the underlying phenomenon of the nuclear power industry. SD is a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems. The spend of SD applications has grown extensively and now encompasses work in corporate planning and policy design, public management and policy, biological and medical modeling, energy and the environment. Recently, according to the report from KEPCO (Korea Electric Power Corporation), they are considering delaying a new power plant construction. It may be based upon business fluctuation downsized from Korean economic crisis in 1997 and freezing of construction funds due to unstable foreign exchange rate. At this point, we need disparately a kind of strategic model that would contribute to cope with the current business situation, energy generation, production, and resulting pollution. Specifically, this model, using SD approach, starts with the detailed drawing of influence diagram, which describes those relevant key points on nuclear power generation systems in electric power industry of Korea. These include such factors as the operation of nuclear industry and parameters related to the decision making for business policy. Based upon the above-mentioned influence diagram drawn, we developed SD simulation model to evaluate and analyze strategic management of KEPCO. Based on our analysis, we could demonstrate how simulation model can be applied to the real electric power generation in Korea.

  • PDF

VALIDATION OF ON-LINE MONITORING TECHNIQUES TO NUCLEAR PLANT DATA

  • Garvey, Jamie;Garvey, Dustin;Seibert, Rebecca;Hines, J. Wesley
    • Nuclear Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-142
    • /
    • 2007
  • The Electric Power Research Institute (EPRI) demonstrated a method for monitoring the performance of instrument channels in Topical Report (TR) 104965, 'On-Line Monitoring of Instrument Channel Performance.' This paper presents the results of several models originally developed by EPRI to monitor three nuclear plant sensor sets: Pressurizer Level, Reactor Protection System (RPS) Loop A, and Reactor Coolant System (RCS) Loop A Steam Generator (SG) Level. The sensor sets investigated include one redundant sensor model and two non-redundant sensor models. Each model employs an Auto-Associative Kernel Regression (AAKR) model architecture to predict correct sensor behavior. Performance of each of the developed models is evaluated using four metrics: accuracy, auto-sensitivity, cross-sensitivity, and newly developed Error Uncertainty Limit Monitoring (EULM) detectability. The uncertainty estimate for each model is also calculated through two methods: analytic formulas and Monte Carlo estimation. The uncertainty estimates are verified by calculating confidence interval coverages to assure that 95% of the measured data fall within the confidence intervals. The model performance evaluation identified the Pressurizer Level model as acceptable for on-line monitoring (OLM) implementation. The other two models, RPS Loop A and RCS Loop A SG Level, highlight two common problems that occur in model development and evaluation, namely faulty data and poor signal selection

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter (확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링)

  • Lee, Sang-Eun;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.

Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller (적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어)

  • Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.

Study on the Improvement of Efficiency in Dehydration Process of LNG Liquefaction Plant Using Molecular Sieve (분자체를 이용한 LNG 액화 플랜트 탈수 공정의 효율성 향상에 관한 연구)

  • JONGHWA PARK;DONSANG YU;DAEMYEONG CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • The natural gas dehydration process plays a central role in liquefying LNG. This study proposes two natural gas dehydration process systems applicable to liquefied natural gas (LNG) liquefaction plants, and compares and analyzes energy optimization measures through simulation. The fuel gas from feed stream (FFF) case, which requires additional equipment for gas circulation, disadvantages are design capacity and increased energy. On the other hand, the end flash gas (EFG) case has advantages such as low initial investment costs and no need for compressors, but has downsides such as increased power energy and the use of gas with different components. According to the process simulation results, the required energy is 33.22 MW for the FFF case and 32.86 MW for the EFG case, confirming 1.1% energy savings per unit time in the EFG case. Therefore, in terms of design pressure, capacity, device configuration, and required energy, the EFG case is relatively advantageous. However, further research is needed on the impact of changes in the composition of regenerated gas on the liquefaction process and the fuel gas system.

Thermo-fluid engineering in deep geothermal energy

  • Kim, Yeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.84.1-84.1
    • /
    • 2015
  • Recent years in particular in Korea see intensive interests in a deep geothermal engineering and its application in different uses as far as from direct uses to power generation sectors, that are achieved by harnessing hot energy sources from the earth. For instance widespread interest has been generated because the geothermal energy is the source that one extracts it for more than 20 hours per day and for about 30 years of an operation of the plant, which enables to give base load as for heating as well as an electric generation. In retrospect, shallow geothermal energy using heat pumps is commonplace in Korea while the deep geothermal is in the early stage of the development. Geothermal energies in view of the way of extracting heat are mainly categorized into several types such as a single well system, a hydrothermal system, an enhanced geothermal system (EGS) etc. In this talk, this speaker focuses on the thermo-fluid engineering of the single well system by introducing the modeling in order to harness hot fluid that is thermally balanced with the fluid of an injection well, which provides a challenge to assess the life time of the well. To avoid the loss of the temperature in producing the hot fluid, a specialized pipe or a borehole heat exchanger has been designed, and its concept is introduced. On the other hand, a binary system or an organic Rankine cycle, which provides the methodology to convert the heat into an electricity, is briefly introduced. Some experimental results of the binary system which has been constructed in our lab will be presented. Lastly as for the future direction, some comments for the industrialization of the deep geothermal energy in this country will be discussed.

  • PDF