• Title/Summary/Keyword: power plant modeling

Search Result 375, Processing Time 0.028 seconds

Modeling and Fault Simulation of Hydro Generator Control System (수력 발전기 제어설비의 모델링과 사고 시뮬레이션)

  • Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, the generator control system by using PSCAD/EMTDC was modeled and several faults simulation were performed. The generator control system is composed of generator, turbine, exciter and governor. The parameters of generator control system model were obtained from field power plant. And then, the various transient phenomena through obtained several signal of developed modeling were analyzed.

Basic Modeling of Jeju Power System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 제주도 전력계통 기본 모델링)

  • Yoo, Hyun-Jae;Kim, Hak-Man;Park, Min-Won;Jung, Gyu-Won;Park, Jae-Se;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.404-405
    • /
    • 2011
  • In this paper, we present basic modeling of Juju power system using PSCAD/EMTDC. In detail, models of bipolar HVDC system, power transmission line, basic thermal power plant, load, and wind farm have been developed for Jeju power system. For evaluating basic dynamic behavior, we tested the system with a simple scenario and the test result showed acceptable response.

  • PDF

Modeling and Parameter Identification of Coal Mill

  • Shin, Hwi-Beom;Li, Xin-Lan;Jeong, In-Young;Park, Jong-Man;Lee, Soon-Young
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.700-707
    • /
    • 2009
  • The coal mill used in the coal-fired power plants is modeled in view of the controller design rather than the educational simulator. The coal mass flow and the outlet temperature are modeled by reinvestigating the mass balance and heat balance models physically. The archived data from a plant database are utilized to identify the model parameters. It can be seen that the simulated model outputs are well matched with the measured ones. It is also expected that the proposed model is useful for the controller design.

3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant (원전 주요기기의 3차원 피로수명 평가)

  • Ahn, Min-Yong;Bae, Sung-Ryul;Park, Young-Jae;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF

Performance evaluation of safety-critical systems of nuclear power plant systems

  • Kumar, Pramod;Singh, Lalit Kumar;Kumar, Chiranjeev
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.560-567
    • /
    • 2020
  • The complexity of safety critical systems of Nuclear Power Plant continues to increase rapidly due its transition from analog to digital systems. It has thus become progressively more imperative to model these systems prior to their implementation in order to meet the high performance, safety and reliability requirements. Timed Petri Nets (TPNs) have been widely used to model such systems for non-functional analysis. The paper presents a novel methodology for the analysis of the performance metrics using PN modeling. The paper uses the isomorphism property of the TPNs and the Markov chains for the performance analysis of the safety critical systems. The presented methodology has been validated on a Shutdown System of a Nuclear Power Plant.

Performance analysis of operators in a nuclear power plant control room using a task network model (직무 네트워크 모형을 이용한 원자력발전소 제어실 운전원들의 수행도분석)

  • 서상문;천세우;이용희
    • Proceedings of the ESK Conference
    • /
    • 1993.10a
    • /
    • pp.21-30
    • /
    • 1993
  • This paper describes the development of a simulation model of nuclear power plant operators including cognitive aspects by using a network modeling soft ware, Micro-SAINT (System Analysis of Integrated Networks of Tasks) for the analysis of operator performance. Network model description based on Micro-SAINT includes tasks, resources, precedence relations among tasks, flow of information and PSFs (Performance Shaping Factors) on task performance. We have tried to evaluate the performance with several performance measures such as the number of tasks allocated, relative time presure among operators within a shift, for the selected test accident scenarior; small-break LOCA (Loss of Coolant Accident) in a PWR (Pressurized Water Reactor) type nuclear power plant.

  • PDF

Tidal regime change due to the Siwha tidal power plant operation in the Yellow and East China Seas

  • Kang, Sok-Kuh;Yum, Ki-Dai;Lee, Kwang-Soo;Jang, Chan-Joo;Park, Jin-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.513-516
    • /
    • 2006
  • The feasibility study for tidal power plant (TPP) has been carried out for the Siwha area inside the Kyunggi bay of the Kyunggi Bay of the Yellow and East china Seas, by KORDI (Korea Ocean Research and Development Institute) and continuing research works for tidal energy development are under progress in the several sites inside the Kyunggi Bay. In this paper we describes some results of the modeling efforts in relation the tidal regime change by Siwha TPP operation, as well as other coastal oceanographic research works involved in TPP development in the coastal region.

  • PDF

Evaluation of availability of nuclear power plant dynamic systems using extended dynamic reliability graph with general gates (DRGGG)

  • Lee, Eun Chan;Shin, Seung Ki;Seong, Poong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.444-452
    • /
    • 2019
  • To assess the availability of a nuclear power plant's dynamic systems, it is necessary to consider the impact of dynamic interactions, such as components, software, and operating processes. However, there is currently no simple, easy-to-use tool for assessing the availability of these dynamic systems. The existing method, such as Markov chains, derives an accurate solution but has difficulty in modeling the system. When using conventional fault trees, the reliability of a system with dynamic characteristics cannot be evaluated accurately because the fault trees consider reliability of a specific operating configuration of the system. The dynamic reliability graph with general gates (DRGGG) allows an intuitive modeling similar to the actual system configuration, which can reduce the human errors that can occur during modeling of the target system. However, because the current DRGGG is able to evaluate the dynamic system in terms of only reliability without repair, a new evaluation method that can calculate the availability of the dynamic system with repair is proposed through this study. The proposed method extends the DRGGG by adding the repair condition to the dynamic gates. As a result of comparing the proposed method with Markov chains regarding a simple verification model, it is confirmed that the quantified value converges to the solution.

AN OVERVIEW OF RISK QUANTIFICATION ISSUES FOR DIGITALIZED NUCLEAR POWER PLANTS USING A STATIC FAULT TREE

  • Kang, Hyun-Gook;Kim, Man-Cheol;Lee, Seung-Jun;Lee, Ho-Jung;Eom, Heung-Seop;Choi, Jong-Gyun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.849-858
    • /
    • 2009
  • Risk caused by safety-critical instrumentation and control (I&C) systems considerably affects overall plant risk. As digitalization of safety-critical systems in nuclear power plants progresses, a risk model of a digitalized safety system is required and must be included in a plant safety model in order to assess this risk effect on the plant. Unique features of a digital system cause some challenges in risk modeling. This article aims at providing an overview of the issues related to the development of a static fault-tree-based risk model. We categorize the complicated issues of digital system probabilistic risk assessment (PRA) into four groups based on their characteristics: hardware module issues, software issues, system issues, and safety function issues. Quantification of the effect of these issues dominates the quality of a developed risk model. Recent research activities for addressing various issues, such as the modeling framework of a software-based system, the software failure probability and the fault coverage of a self monitoring mechanism, are discussed. Although these issues are interrelated and affect each other, the categorized and systematic approach suggested here will provide a proper insight for analyzing risk from a digital system.