• Title/Summary/Keyword: power line inspection

Search Result 87, Processing Time 0.027 seconds

A Study on the Application of Phased Array Ultrasonic Testing to Main Steam Line in Nuclear Power Plants (원전 주증기배관 웰더렛 용접부 위상배열초음파검사 적용연구)

  • Lee, Seung-Pyo;Kim, Jin-Hoi
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2011
  • KSNPs(Korea Standard Nuclear Power Plant) have been applied the break exclusion criteria to the high energy lines passing through containment penetration area to ensure that piping failures would not cause the loss of containment isolation function, and to reduce the resulting dynamic effects. Systems with the criteria are the Main Steam system, Feed Water system, Steam Generator Blowdown system, and Chemical & Volume Control system. In accordance with FSAR(Final Safety Analysis Report), a 100% volumetric examination by augmented in-service inspection of all pipe welds appled the break exclusion criteria is required for the break exclusion application piping. However, it is difficult to fully satisfy the requirements of inspection because 12", 8" and 6" weldolet weldments of Main Steam pipe line have complex structural shapes. To resolve the difficulty on the application of conventional UT(Ultrasonic Testing) technique, realistic mock-ups and UT calibration blocks were made. Simulations of conventional UT were performed utilizing CIVA, a commercial NDE(Nondestructive Examination) simulation software. Phased array UT experiments were performed through mock-up including artificial notch type flaws. A phased array UT technique is finally developed to improve the reliability of ultrasonic test at main steam line pipe to 12", 8" and 6" branch connection weld.

Anticorrosive Monitoring and Complex Diagnostics of Corrosion-Technical Condition of Main Oil Pipelines in Russia

  • Kosterina, M.;Artemeva, S.;Komarov, M.;Vjunitsky, I.;Pritula, V.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.208-211
    • /
    • 2008
  • Safety operation of main pipelines is primarily provided by anticorrosive monitoring. Anticorrosive monitoring of oil pipeline transportation objects is based on results of complex corrosion inspections, analysis of basic data including design data, definition of a corrosion residual rate and diagnostic of general equipment's technical condition. All the abovementioned arrangements are regulated by normative documents. For diagnostics of corrosion-technical condition of oil pipeline transportation objects one presently uses different methods such as in-line inspection using devices with ultrasonic, magnetic or another detector, acoustic-emission diagnostics, electrometric survey, general external corrosion diagnostics and cameral processing of obtained data. Results of a complex of diagnostics give a possibility: $\cdot$ to arrange a pipeline's sectors according to a degree of corrosion danger; $\cdot$ to check up true condition of pipeline's metal; $\cdot$ to estimate technical condition and working ability of a system of anticorrosive protection. However such a control of corrosion technical condition of a main pipeline creates the appearance of estimation of a true degree of protection of an object if values of protective potential with resistive component are taken into consideration only. So in addition to corrosive technical diagnostics one must define a true residual corrosion rate taking into account protective action of electrochemical protection and true protection of a pipeline one must at times. Realized anticorrosive monitoring enables to take a reasonable decision about further operation of objects according to objects' residual life, variation of operation parameters, repair and dismantlement of objects.

Improvement Method of Supplying Reliability on the Electric Railway Power Distribution System (전기철도 고압배전시스템의 공급신뢰도 향상 방안 연구)

  • Kim Young-Sun;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.682-687
    • /
    • 2005
  • High quality power supplying of power distribution system in electric railway system is the important function. Power feeding system is complicated witch is compose with distribution line, circuit break, protection facilities and so on. Among this components, role of substation is most important for elevation of reliability in electric power system. Therefore, the enhanced reliability considering the preventive inspection, repair work, replacement is necessary. In this study, a proposed the enhanced reliability method through a calculation of fault probability in power feeding system.

  • PDF

On-line Detection of Cracks in Eggshell (계란 크랙의 온라인 검출)

  • 최완규;조한근;백진하;장영창;연광석;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This study was conducted to develop an automatic egg inspection system for detecting creaked eggs based on acoustic impulse response. This system includes a sound generator, a sound sensor with signal conditioner, and a computer. The sound generator that hit the sharp of the dull edges of an egg was constructed with a ceramic ball pendulum attached to a rotary type solenoid. The signal conditioner included a pre-amplifier and a digital signal processing (DSP) board. The parameters for distinguishing cracked and normal eggs were the area, the geometric centroid and the resonance frequency of power spectrum of the acoustic signal generated. An algorithm for on-line detection of the continuous transferring eggs was developed. The performance tests resulted with 91% success rate to separate cracked and normal eggs at the rate of 1 second per an egg.

  • PDF

Area Usage Factor Analyzing Method for Semi-conductor Manufacturing Process

  • Konishi, Katunobu;Ukida, Hiroyuki;Sawada, Koutarou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.480-483
    • /
    • 1998
  • For memory products, it is very important to develop a new production line as soon as possible. All products are inspected to get rid of defected products at the last testing stage. Those inspection data are called FCM. In this paper, based on the FCM data, Area Usage Factor (AUF) analyzing method will be proposed. Process engineers can make up their mind to which direction they should concentrate their analyzing power.

  • PDF

UV Detecting according to Corona Discharge Intensity using UV Sensor (자외선 센서를 이용한 코로나 방전 강도에 따른 자외선 검출)

  • Kwag, Dong-Soon;Kim, Young-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.78-83
    • /
    • 2014
  • To minimize the financial loss due to power facility malfunction, on-line diagnostic techniques are required to grasp any abnormal state of facilities in the live line as well as devices to diagnose abnormal states of power facility in an easy and prompt manner. This study aims to develop a portable UV detecting system by means of UV sensors for easier and efficient inspection of the degradation state of power facility in a long distance. Accordingly, it includes a simulation of corona discharges that may occur due to degradation of power facility and detection of ultraviolet pulse generation depending on the corona discharge intensity and measuring distance in application of UV sensors. Additionally, the optimal algorithm is determined for its application to the system's degradation diagnosis program based on the measured experiment data.

DETECTION OF ODSCC IN SG TUBES DEPENDING ON THE SIZE OF THE CRACK AND ON THE PRESENCE OF SLUDGE DEPOSITS

  • Chung, Hansub;Kim, Hong-Deok;Kang, Yong-Seok;Lee, Jae-Gon;Nam, Minwoo
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.869-874
    • /
    • 2014
  • It was discovered in a Korean PWR that an extensive number of very short and shallow cracks in the SG tubes were undetectable by eddy current in-service-inspection because of the masking effect of sludge deposits. Axial stress corrosion cracks at the outside diameter of the steam generator tubes near the line contacts with the tube support plates are the major concern among the six identical Korean nuclear power plants having CE-type steam generators with Alloy 600 high temperature mill annealed tubes, HU3&4 and HB3~6. The tubes in HB3&4 have a less susceptible microstructure so that the onset of ODSCC was substantially delayed compared to HU3&4 whose tubes are most susceptible to ODSCC among the six units. The numbers of cracks detected by the eddy current inspection jumped drastically after the steam generators of HB4 were chemically cleaned. The purpose of the chemical cleaning was to mitigate stress corrosion cracking by removing the heavy sludge deposit, since a corrosive environment is formed in the occluded region under the sludge deposit. SGCC also enhances the detection capability of the eddy current inspection at the same time. Measurement of the size of each crack using the motorized rotating pancake coil probe indicated that the cracks in HB4 were shorter and substantially shallower than the cracks in HU3&4. It is believed that the cracks were shorter and shallower because the microstructure of the tubes in HB4 is less susceptible to ODSCC. It was readily understood from the size distribution of the cracks and the quantitative information available on the probability of detection that most cracks in HB4 had been undetected until the steam generators were chemically cleaned.

Technology of Inspection and Real-time Displacement Monitoring on Critical Pipe for Power Plant (발전용 고온 배관의 점검 및 실시간 변위감시 기술)

  • Hyun, Jung-Seob;Heo, Jae-Sil;Cho, Sun-Young;Heo, Jeong-Yeol;Lee, Seong-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1177-1186
    • /
    • 2009
  • High temperature steam pipes of thermal power plant are subject to a severe thermal range and usually operates well into the creep range. Cyclic operation of the plant subjects the piping system to mechanical and thermal fatigue damages. Also, poor or malfunctional supports can impose massive loads or stress onto the piping system. In order to prevent the serious damage and failure of the critical piping system, various inspection methods such as visual inspection, computational analysis and on-line piping displacement monitoring were developed. 3-dimensional piping displacement monitoring system was developed with using the aluminum alloy rod and rotary encoder sensors, this system was installed and operated on the high temperature steam piping of "Y" thermal power plant successfully. It is expected that this study will contribute to the safety of piping system, which could minimize stress and extend the actual life of critical piping.

A Study on Monitoring Means of Insulation deterioration of Electric Power Cable (전력케이블 열화 감시방안에 관한 연구)

  • Han, Hag-Su;Min, Kyung-Yun;Ryu, Ki-Son
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1522-1528
    • /
    • 2007
  • Electric Power cable is the apparatus that receives electric power from the Korea Electric Power Corporation and supplies electric power to electric train and annex facilities of each railway station. With substantial ripple effect during power blackout accidents, such power blackout accidents must be coped with by discriminating the status of insulation deterioration of electric power cable in advance. Discrimination of insulation deterioration of the electric power cable is normally executed while the power is disconnected and it is very difficult to discover, at early stage, the insulation deterioration of the power cable in operational state since the duration of inspection is limited. This research aims to consider method of diagnosing the insulation deterioration of electric power cable in On-Line state rather than diagnosis in Off-Line state in order to secure reliability of power supply by reducing duration of power blackout (accidental blackout and blackout during works) and by seeking reduction in equipment and manpower used in diagnosis of deterioration through prevention of the accident itself prior to occurrence through early restoration of accident due to insulation deterioration of the electric power cable and assessment of performance of the cable under operation.

  • PDF

Application of Guided Ultrasonic Wave Technology for Evaluation of Welding Part in Cooling Water Pipe (냉각수 배관 용접부 평가를 위한 유도초음파 기술의 적용)

  • Gil, D.S.;Ahn, Y.S.;Park, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.36-40
    • /
    • 2010
  • The ultrasonic guided wave propagates along with the given structure's wall direction. Because of this specific character, the ultrasonic guided waves arc used in many other fields. Especially, it can be readily utilized for nondestructive inspection of various structures that are made up of gas pipes, heat exchanger tubes, and thin plates. Further, the guided wave technology can be readily utilized when inspecting pipes or thin plates which pose high risk of the accident but for which the nondestructive inspection itself is impossible because it is difficult to get to them since they are coated or buried underground. In the other hand, conventional ultrasonic testing such as thickness gauging uses bulk waves and only tests the region of structure immediately below the transducer. As a result of the application about inlet and outlet cooling water line using guided wave test, we conformed that the overall corrosions were in the lower side of the 304.8 mm inlet valve and these corrosions were engaged in not locally but through the lower side of the valve line. In the near future, we can expect that the detectable defect size is smaller than before along with the development of the sensing technology.