• Title/Summary/Keyword: power law process

Search Result 214, Processing Time 0.027 seconds

A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor. (에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로)

  • Jang Dong-Sun;Kim Gyeong-Mi;Lee Eun-Ju;Park Byeong-Su;Kim Bok-Sun
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF

Creep Characteristics of Unconsolidated Shale (미고결 셰일의 크립 특성)

  • Chang, Chan-Dong;Zoback, Mark
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.195-200
    • /
    • 2006
  • Laboratory creep experiments show that compaction of unconsolidated shale is an irrecoverable process caused by viscous time-dependent deformation. Using Perzyna's viscoplasticity framework combined with the modified Cam-clay theory, we found the constitutive equation expressed in the form of strain rate as a power law function of the ratio between the sizes of dynamic and static yield surfaces. We derived the volumetric creep strain at a constant hydrostatic pressure level as a logarithmic function of time, which is in good agreement with experimental results. The determined material constants indicate that the yield stress of the shale increases by 6% as strain rate rises by an order of magnitude. This demonstrates that the laboratory-based prediction of yield stress (and porosity) may result in a significant error in estimating the properties in situ.

  • PDF

Fatigue Behavior of Welded Joints in HT60 Grade TMCP Steel (HT60급 TMCP강 용접부의 피로 거동)

  • Yong, Hwan Sun;Kim, Seok Tae;Cho, Yong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.133-133
    • /
    • 1996
  • Application of the relationship $da/dN=C({\Delta}K)^{m}$ is effective in the analysis of fatigue crack growth life. The values of material constant C and m have great influences on the predicted fatigue life and the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(${\Delta}K$) is effective in fatigue crack growth behavior. In this paper, fatigue crack growth behavior of the welded joints in HT60 grade TMCP(Thermo Machanical Control Process) steel have been studied. To evalute the fatigue crack growth rates of HT60 grade TMCP steel, fatigue test was performed by base metal(BM), heat affected zone(HAZ) and weld metal(WM) in TMCP steel at room temperature. We determined the relationship of $da/dN-{\Delta}K$ by correlation between C and m obtained from the Paris-Erdogan power law data supplied HT60 grade TMCP steel. The obtained results from this study indicate that fatigue crack growth rate of TMCP steel is not influenced by softening effect which occurs in the HAZ when high heat input weld is carried out. Softening effects, which affect fatigue properties. are shown that it is not affected to the fatigue growth rates significantly.

  • PDF

Rheological Properties and Particle Size Distribution of Northeast Mixed Hardwood for Enzymatic Saccharification Processing with High Substrates Loading

  • Um, Byung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.56-65
    • /
    • 2008
  • In this paper experimental results are presented for the rheological behavior of high-solids saccharification of mixed northeast hardwood as a model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20 percent slurry concentrations with constant enzyme concentrations were performed under variable rotational speed of a viscometer (2.0 to 200 RPM) at combined temperatures (50 to $30^{\circ}C$) for the initial four hours. The viscosities of saccharification slurries observed were in the ranges of 0.024 to 0.028, 0.401 to 0.058, and 0.840 to 0.087 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20 percent initial solids (w/v) respectively. The fluid behavior of the suspensions was modeled using the power-law, the Herschel-Bulkley, the Casson, and the Bingham model. The results showed that broth slurries were pseudoplastic with a yield stress. The model slope increased and the model intercept decreased with increasing fermentation time at shear rates normal for the fermentor. The broth slurries exhibited Newtonian behavior at high and low shear rates during initial saccharification process. The solid particle size ranged from 57.8 to $70.0{\mu}m$ for $40^{\circ}C$ and from 44.0 to 57.5 11m for combined temperatures at 10, 15, and 20 percent initial solids (w/v) respectively.

Spatial and Statistical Properties of Electric Current Density in the Nonlinear Force-Free Model of Active Region 12158

  • Kang, Jihye;Magara, Tetsuya;Inoue, Satoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2016
  • The formation process of a current sheet is important for solar flare from a viewpoint of a space weather prediction. We therefore derive the temporal development of the spatial and statistical distribution of electric current density distributed in a flare-producing active region to describe the formation of a current sheet. We derive time sequence distribution of electric current density by applying a nonlinear force-free approximation reconstruction to Active Region 12158 that produces an X1.6-class flare. The time sequence maps of photospheric vector magnetic field used for reconstruction are captured by a Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamic Observatory (SDO) on 10th September, 2014. The spatial distribution of electric current density in NLFFF model well reproduce observed sigmoidal structure at the preflare phase, although a layer of high current density shrinks at the postflare phase. A double power-law profile of electric current density is found in statistical analysis. This may be expected to use an indicator of the occurrence of a solar flare.

  • PDF

The Effect of Hygrothermal Aging on the Properties of Epoxy Resin

  • Wang, Youyuan;Liu, Yu;Xiao, Kun;Wang, Can;Zhang, Zhanxi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.892-901
    • /
    • 2018
  • Because of excellent electrical properties, epoxy resin is widely used in packaging and casting power equipment. Moisture and temperature in the environment are inclined to seriously affect the insulation tolerance of epoxy resin. This work focuses on the aging characteristics of epoxy resin in hygrothermal environment. Scanning electron microscopy images show that there are micro-crack, micro-slit and holes inside aged samples. The moisture absorption process undergoes three equilibrium stages and it does not follow the Fick's second law. Observing the change of hydrogen bonds in the infrared spectra of the dried samples, it is found that chemically moisture absorption immerges when the physical moisture absorption entered the third equilibrium stage. By Debye equation to fit the imaginary part of the dielectric constant, it is concluded that the uniformity of water molecule has a great influence on the electrical conductivity loss. Furthermore, the polarization loss can be more easily affected by water molecules than small free molecules. After the aged samples being dried, their real and imaginary part of the dielectric constant descend, but their original electrical properties cannot completely restored. After chemical moisture absorption appears inside the material, the residual space charges increase significantly and the charge dissipation rate slow down obviously.

A Study on the treatment of drug addiction through fusion medicine and the measures to prevent drug crime diffusion - Focused on cases of Entertainment industry drug offense -

  • NAM, SeonMo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.172-178
    • /
    • 2018
  • In this paper, I tried to pursue health and social welfare together through medical convergence based on the main subject of a culture of convergence. Artists' drug accidents are never ending. Now Korea is also out of the drug cleansing country. it is impossible to get rid of them with the national public power. It is time for a treatment plan for these. They need a certain period of time and regular periods of rest and control over sports. Our humanities are researching to understand the changing human images of today. In parallel, medical convergence will also have to be transformed in various ways for human healing. Recently, we can see the case of healing with the combination of oriental medicine, natural healing and western medicine. Furthermore, the structure of medical convergence for the fight against disease can be analyzed as an example. South Korea is also preparing for various convergence programs focusing on natural sciences such as engineering, medical care, and the environment. In order to prevent drug addiction it is important to determine the department responsible for handling the problem of substance abuse. we need to improve the environment that they can be combined with Ondol therapy and natural healing therapies. Furthermore, I expect that fusion medicine will contribute to improving the quality of life of drug addicts and become a successful model to revitalize local economies in particular.

Bending and buckling of porous multidirectional functionality graded sandwich plate

  • Lazreg, Hadji;Fabrice, Bernard;Royal, Madan;Ali, Alnujaie;Mofareh Hassan, Ghazwani
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.233-246
    • /
    • 2023
  • Bending and buckling analysis of multi-directional porous functionally graded sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. The principle of virtual displacements was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The validation of the present study has been performed with those available in the literature. The composition of metal-ceramic-based FGM changes in longitudinal and transverse directions according to the power law. Different porosity laws, such as uniform distribution, unevenly and logarithmically uneven distributions were used to mimic the imperfections in the functionally graded material that were introduced during the fabrication process. Several sandwich plates schemes were studied based on the plate's symmetry and the thickness of each layer. The effects of grading parameters and porosity laws on the bending and buckling of sandwich plates were examined.

Free vibration analysis of multi-directional porous functionally graded sandwich plates

  • Guermit Mohamed Bilal Chami;Amar Kahil;Lazreg Hadji;Royal Madan;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.263-277
    • /
    • 2023
  • Free vibration analysis of multi-directional porous functionally graded (FG) sandwich plate has been performed for two cases namely: FG skin with homogeneous core and FG core with homogeneous skin. Hamilton's principle was employed and the solution was obtained using Navier's technique. This theory imposes traction-free boundary conditions on the surfaces and does not require shear correction factors. The results obtained are validated with those available in the literature. The composition of metal-ceramic-based functionally graded material (FGM) changes in longitudinal and transverse directions according to the power law. Imperfections in the functionally graded material introduced during the fabrication process were modeled with different porosity laws such as evenly, unevenly distributed, and logarithmic uneven distributions. The effect of porosity laws and geometry parameters on the natural frequency was investigated. On comparing the natural frequency of two cases for perfect and imperfect sandwich plates a reverse trend in natural frequency result was seen. The finding shows a multidirectional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters and imperfection types have been identified which will guide experimentalists and researchers in selecting fabrication routes for improving the performance of such structures.

A review on dynamic characteristics of nonlocal porous FG nanobeams under moving loads

  • Abdulaziz Saud Khider;Ali Aalsaud;Nadhim M. Faleh;Abeer K. Abd;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This research presents dynamical reaction investigation of pore-dependent and nano-thickness beams having functional gradation (FG) constituents exposed to a movable particle. The nano-thickness beam formulation has been appointed with the benefits of refined high orders beam paradigm and nonlocal strain gradient theory (NSGT) comprising two scale moduli entitled nonlocality and strains gradient modulus. The graded pore-dependent constituents have been designed through pore factor based power-law relations comprising pore volumes pursuant to even or uneven pore scattering. Therewith, variable scale modulus has been thought-out until process a more accurate designing of scale effects on graded nano-thickness beams. The motion equations have been appointed to be solved via Ritz method with the benefits of Chebyshev polynomials in cosine form. Also, Laplace transform techniques help Ritz-Chebyshev method to obtain the dynamical response in time domain. All factors such as particle speed, pores and variable scale modulus affect the dynamical response.