• Title/Summary/Keyword: power intensity

Search Result 1,332, Processing Time 0.024 seconds

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

A Basic Study on X-ray Controlled Semiconductor Switch for Pulse Power (펄스파워용 X선제어 무도체스위치의 기본연구)

  • Ko, Kwang-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1013-1020
    • /
    • 1992
  • The conductivity variation of a high resistivity bulk silicon semiconductor, whose electrodes were deposited with aluminum vapor, was studied experimentally by measuring the X-ray intensity and current flow, which was developed by X-ray radiation while applying a pulse voltage to the silicon, in a load resistor connected to the semiconductor. The current flow observed immediately as the X-ray radiated, and when the X-ray decreased. It was found from the observation of switching current for the X-ray intensity and the voltage applied in the semiconductor that the switching current of the semiconductor increased as the intensity of the X-ray and the applied voltage increased. In case of lower applied voltage, the switching current for higher applied voltage depended on the intensity of the X-ray radiated due to the saturation of electron and hole.

  • PDF

Prediction of Aerodynamic Performance on Wind Turbines in the Far Wake (후류 영향을 고려한 풍력 발전 단지 성능 예측 연구)

  • Son, Eunkuk;Kim, Hogeon;Lee, Seungmin;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.59.2-59.2
    • /
    • 2011
  • Although there are many activities on the construction of wind farm to produce amount of power from the wind, in practice power productions are not as much as its expected capabilities. This is because a lack of both the prediction of wind resources and the aerodynamic analysis on turbines with far wake effects. In far wake region, there are velocity deficits and increases of the turbulence intensity which lead to the power losses of the next turbine and the increases of dynamic loadings which could reduce system's life. The analysis on power losses and the increases of fatigue loadings in the wind farm is needed to prevent these unwanted consequences. Therefore, in this study velocity deficits have been predicted and aerodynamic analysis on turbines in the far wake is carried out from these velocity profiles. Ainslie's eddy viscosity wake model is adopted to determine a wake velocity and aerodynamic analysis on wind turbines is predicted by the numerical methods such as blade element momentum theory(BEMT) and vortex lattice method(VLM). The results show that velocity recovery is more rapid in the wake region with higher turbulence intensity. Since the velocity deficit is larger when the turbine has higher thrust coefficient, there is a huge aerodynamic power loss at the downstream turbine.

  • PDF

Decomposition Analysis of CO2 Emissions of the Electricity Generation Sector in Korea using a Logarithmic Mean Divisia Index Method (전력산업의 온실가스 배출요인 분석 및 감축 방안 연구)

  • Cho, Yongsung
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.357-367
    • /
    • 2017
  • Electricity generation in Korea mainly depends on thermal power and nuclear power. Especially the coal power has led to the increase in $CO_2$ emissions. This paper intends to analyze the current status of $CO_2$ emissions from electricity generation in Korea during the period 1990~2016, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in $CO_2$ emissions. The main results as follows: first, $CO_2$ emission from electricity generation has increased by $165.9MtCO_2$ during the period of analysis. Coal products is the main fuel type for thermal power generation, which accounts about 73% $CO_2$ emissions from electricity generation. Secondly, the increase of real GDP is the most important contributor to increase $CO_2$ emissions from electricity generation. The carbon intensity and the electricity intensity also affected the increase in $CO_2$ emission, but the energy intensity effect and the dependency of thermal power effect play the dominant role in decreasing $CO_2$ emissions.

A Study on the Analytical Characterizations of the Low Flow-Low Power ICP-AES (Low flow-low power 유도결합 플라즈마 원자방출 분광법에서의 분석적 특성에 관한 연구)

  • Yang, Hae Soon;Kim, Young Man;Kim, Sun Tae;Choi, Beom Suk
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.253-260
    • /
    • 1994
  • Analytical characteristics of low power-low flow inductively coupled plasma-atomic emission spectometry(ICP-AES) has been studied. Although the net intensity of the low power ICP is lower than the moderate power ICP, the signal to background ratio becomes higher since the background intensity decreases with decreasing the RF power. The detection limit of the low power ICP is comparable with that of the moderate power ICP. The dynamic range of the calibration curve of the low power ICP is $10^4{\sim}10^5$. The ionization interferences by alkali metals increase with increasing the carrier gas flow rate, but the effects are not varied significantly with the RF power.

  • PDF

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

A Carge-discharge System of a Solar-Electric Vehicle (태양광-전기자동차의 충전·방전 시스템에 관한 연구)

  • Sim, Hansub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.78-84
    • /
    • 2019
  • Design of an electric power system on the solar-electric vehicle is very important because sunlight intensity is changed by weather conditions and road environments. Power output of solar module on the vehicle being changed by unsteady sunlight intensity. In this paper, design method of an electric power system are proposed to generate steady electric power output. The test results shows the electric power system are effective because the solar-electric vehicle have steady driving speed under unsteady sunlight conditions.

A study on the Measurement of Field Transmission Loss through Doors in Buildings Using the Surface Intensity Method. (Surface Intensity 법에 의한 건물내 출입문의 차음성능 현장측정에 관한 연구)

  • 손장열;오재응;김흥식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.3-12
    • /
    • 1985
  • The surface intensity method is a relatively new tool which can identify the noise source or path and measure the radiation power. One microphone and one accelerometer are used in this new technique. In this study, this new technique has been used to measure the field transmission loss trough doors. The results of the experiment indicate that the surface intensity method produces reliable data and can be applied to the transmission loss measurement.

  • PDF

A study on the Measurement of Field Transmission Loss through Doors in Buildings Using the Surface Intensity Method. (Surface Intensity 법에 의한 건물내 출입문의 차음성능 현장측정에 관한 연구)

  • Son, Jang Yeol;O, Jae Eung;Kim, Heung Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.3.1-3.1
    • /
    • 1985
  • The surface intensity method is a relatively new tool which can identify the noise source or path and measure the radiation power. One microphone and one accelerometer are used in this new technique. In this study, this new technique has been used to measure the field transmission loss trough doors. The results of the experiment indicate that the surface intensity method produces reliable data and can be applied to the transmission loss measurement.

Study on Validity of 1-D Spherical Model on Aqua-plasma Power Estimation With Electrode Structure

  • Yun, Seong-Yeong;Jang, Yun-Chang;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.74-74
    • /
    • 2010
  • The aqua-plasma is the non-thermal plasma in electrical conductive electrolyte by generates the vapor film layer on the immersed metal electrode surface. This plasma can generate the hydroxyl radical by dissociate the water molecule with the plasma electron. To develop the plasma discharge device for high efficiency in the hydroxyl radical generation, proper model for estimation of plasma power is necessary. In this work, the 1-D spherical model was developed, considering temperature dependence material constants. The relation between the plasma power and hydroxyl generation was also studied by the comparison between the optical emission intensity from the hydroxyl radical using monochromator and estimated plasma power. First, the thickness of vapor layer thickness was estimated using the Navier-Stokes fluid equation in order to calculate the discharge E-field inside vapor layer. Using the E-field magnitude and power balance on the plasma generation, it was possible to estimate the plasma power. The plasma power was assumed to uniformly fill the vapor layer and the temperature of vapor layer was fixed in the boiling temperature of electrolyte, 375K. In the experiment, the aqua-plasma was discharged in the saline by applied the voltage on the bipolar electrode. The range of applied voltage was 234 to 280V-rms in the frequency of 380 kHz. Two type electrodes were produced with two ${\Phi}0.2$ tungsten. The plasma power was estimated from the V-I signal from the two high voltage probes and current probe. The estimated plasma power agreed with the profile of emission intensity when the plasma discharged between the metal electrode and vapor layer surface. However, when the plasma discharged between the metal electrodes, the increasing rate of emission intensity was lower than the increase of plasma power. It implies that the surface reaction is more sufficient rather than the volume reaction in the radical generation, due to the high density of water molecule in the liquid.

  • PDF