• Title/Summary/Keyword: power inductor

Search Result 999, Processing Time 0.028 seconds

Voltage-controlled Oscillator Using Dielectric Resonator for WLL System (유전체 공진기를 이용한 WLL용 전압제어발진기)

  • 홍성용
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.843-849
    • /
    • 1998
  • A voltage controlled oscillator using dielectric resonator for 2.4 GHz WLL System is designed and fabricated. To improve the phase noise characteristic resonator is used as an inductor of VCO. At the bias condition of 5 V and 10 mA, the output power and phase noise in the operating frequency range of 2210~2240 MHz are 0 dBm and 100 dBc/Hz 10 kHz offset from the carrier, respectively. The phase noise and harmonic response of fabricated VCO are suitable for WLL system.

  • PDF

ZVT PWM AC-DC Boost Converter with Active Snubber (능동 스너버를 갖는 ZVT PWM AC-DC 승압 컨버터)

  • Kim, Choon-Sam;Sung, Won-Ki;Lee, Jung-Moon;Choi, Chan-Sok;Kim, Soo-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.214-220
    • /
    • 2008
  • Most of converter system could obtain almost unity power factor and make input current sinusoidal waveform, but they have many problems, such as electromagnetic interference and switching losses caused by switching noise in main switch. To solve these problems in hard switching PFC converter, soft switching converter using a resonant between capacitor and inductor is invented In this paper, advantages and disadvantages of conventional ZVT(Zero-Voltage-Transition) soft switching converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter proposed. This improved ZVT converter's operation principal, specific property, design scheme of main are described. From Simulation and experiment results of conventional ZVT soft switching and improved ZVT soft switching converter with active snubber, characteristics of the converter are confirmed.

A Study on High Efficiency Electronic Ballast for Metal Halide Discharge Lamps (메탈핼라이드 램프용 고효율 전자식 안정기에 관한 연구)

  • Kim, Hae-Jun;Won, Jae-Sun;Park, Jae-Wook;Seo, Cheol-Sik;Lee, Seung-Hee;Sim, Kwang-Yeal;Kim, Jong-Hae;Kim, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2157-2165
    • /
    • 2007
  • A novel design technology for a high frequency electronic ballast for metal-halide discharge lamps is proposed. A PFC technique is adopted to get unit power factor and output frequency alteration technique is adopted to avoid acoustic resonance. For characteristics evaluation, the designed electronic ballast is presented using normalized parameter. To reduce losses of the ballast. ZVS control technique is adopted and the maximum flux density of magnetic core for inductor should be kept lower. The electronic ballast for 250[W] metal-halide discharge lamp is implemented and 96[%] efficiency and low conducted EMI level are accomplished.

Inductor design and test for high density pulsed power supply (고집적 펄스파워용 인덕터의 설계 및 제작 실험)

  • Kim, Young-Bae;Park, Jae-Yun;Kim, Jong-Soo;Ryu, Hong-Je;Kim, Jin-Sung;Lee, Byung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1320-1321
    • /
    • 2008
  • 펄스파워기술은 저장된 전자에너지를 시공간적으로 압축 중첩하여 극히 짧은 시간안에 대전력을 발생시켜 좁은 공간에 에너지를 집중 공급하는 기술이다. 여기에는 에너지를 저장하는 충전장치에 대한 기술과, 빠른 시간에 에너지를 방출하는 스위칭기술, 파형을 성형하는 펄스포밍 네트워크 기술등을 포함하며, 이를 이용한 응용기술로 플라즈마건, 이온빔 가속장치, 펄스성형용접, 수처리 발라스트, 파암장비, 코일건, 레일건 등이 있으며, 이 응용분야에 오래전부터 이용되어 왔다. 이러한 분야에 적용되는 펄스전원장치는 이동성이 용이해야 하고, 부피 또한 작은 구조를 가져야 한다. 본 논문은 고집적화 펄스전원장치의 츠로토 타입 설계, 제작, 실험에 관한 논문으로 그 중 펄스성형을 이뤄내는 인덕터에 대한 성능 실험 결과를 위주로 한다.

  • PDF

Design of miniaturized active 90$^{\circ}$ phase divider on RFIC/MMIC for application to maritime wireless communication components (해상 무선통신소자의 응용을 위한 RFIC/MMIC용 소형화된 능동형 90$^{\circ}$ 위상 분배기의 설계)

  • Park, Young-Bae;Yun, Young
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.406-411
    • /
    • 2005
  • In this paper, we propose an active 90$^{\circ}$ phase divider for application to MMIC. Because of their very large size, conventional passive 90$^{\circ}$ dividers can't be integrated on MMIC. Therefore, highly miniaturized 90$^{\circ}$ dividers are required for a development of highly integrated MMIC. For this reason, active 90$^{\circ}$ divider is indispensable because active phase divider is much smaller than conventional passive dividers, and it can be integrated on MMIC. In this work, we developed active 90$^{\circ}$ divider with emitter inductor, and it was employed for the operation of the balanced mixer in order to verify the performance of the active 90$^{\circ}$ divider. According to the results, it was found that the active 90$^{\circ}$ divider exhibited good RF performances comparable to conventional passive power dividers.

  • PDF

An Improved Soft Switching Bi-directional PSPWM FB DC/DC Converter

  • Kim, Eun-Soo;Joe, Kee-Yeon;Kim, Yoon-Ho;Cho, Yong-Hyun;Choi, Won-Beom
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1042-1046
    • /
    • 1998
  • A new soft switching isolated bi-directional phase shifted pulse width modulation (PSPWM) dc/dc converter is presented. Due to the use of the energy recovery snubber, the isolated bi-directional PSPWM dc/dc converter has a significant reduction of switching losses in the switching devices of the primary and secondary side bridge, respectively. The proposed soft switching bi-directional PSPWM FB dc/dc converter provides an energy recovery snubber which consists of two fast recovery diodes, a resonant capacitor and a resonant inductor. The complete operating principles and simulation results will be presented.

  • PDF

A new low-cost energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 저가형 에너지 회수 회로)

  • Kim Tae-Sung;Choi Seong-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.68-70
    • /
    • 2006
  • A new low-cost energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. It has two auxiliary switches clamped on a half sustain voltage, and inductor currents are built up before the PDP is charged and -discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

  • PDF

A new low-cost asymmetric current-fed energy-recovery circuit for a plasma display panel (PDP을 위한 새로운 저가형 비대칭 전류 주입 에너지 회수 회로)

  • Kim Tae-Sung;Han Sang-Kyoo;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.78-80
    • /
    • 2006
  • A new low-cost asymmetric current-fed energy-recovery circuit (ERC) for a plasma display panel (PDP) is proposed. LC resonant circuit biased by $V_s/2$ and composed of single switch is used as ERC on both sides of the PDP, slow discharging and fast charging times can be employed, and inductor currents are built up before the PDP is charged and discharged. Therefore, it features a low cost, fully charged/discharged PDP, zero voltage switching (ZVS), low electromagnetic interference (EMI), low current stress, no severe voltage notch, and high energy-recovery capability.

  • PDF

A New ZCS PWM Boost Converter with operating Dual Converter (Dual 컨버터로 동작하는 새로운 ZCS PWM Boost Converter)

  • Kim Tea-Woo;Chin Gi-Ho;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.525-528
    • /
    • 2002
  • A Novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter for reducing two rectifiers reverse recovery related losses Is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching(ZVS, ZCS) condition. The reverse recovery related switching losses and EMI problems of the proposed converter eliminates the reverse recovery current of the freewheeling diode(D, Dl) by adding the resonant inductor Lr, in series with the switch S2. The voltage and current stresses of the components are similar to those in its conventional hard switching counterpats. As mentioned above, the characteristics are verified through experimental results.

  • PDF

A ZCT PWM Boost Converter using parallel MOSFET switch (병렬 MOSFET 스위치를 이용한 ZCT PWM Boost Converter)

  • Kim Tea-Woo;Hur Do-Gil;Kim Hack-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.759-762
    • /
    • 2002
  • A ZCT(Zero Current Transition) PWM(Pulse-Width-Modulation) boost converter using parallel MOSFET switch is proposed in this paper. The IGBT(main switch) of the proposed converter is always turned on with zero current switching and turned off with zero current/zero voltage switching. The MOSFET(auxiliary switch) is also operates with soft switching condition. In addtion to, the proposed converter eliminates the reverse recovery current of the freewheeling diode by adding the resonant inductor, Lr, in series with the main switch. Therefore, the turn on/turn off switching losses of switches are minimized and the conduction losses by using IGBT switch are reduced. In addition to, using parallel MOSFET switch overcomes the switching frequency limitation occurred by current tail. As mentioned above, the characteristics are verified through experimental results.

  • PDF