• Title/Summary/Keyword: power curve

Search Result 1,268, Processing Time 0.036 seconds

Radiated Noise Analysis of Marine Diesel Engine from Structural Vibration (선박용 디젤 엔진의 구조진동에 의한 방사소음 해석)

  • Kim, Dae-Hwan;Jeong, Weui-Bong;Park, Jeong-Geun;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • This paper summarizes a design procedure of radiated noise from engine blocks of marine engines. This air-borne noise is one of the significant noise contributors including the aeroacoustic noise due to intake and exhaust and the re-radiation due to structure-borne noise. Excitation forces by engine operations are evaluated taking into account the power generation mechanism from the burning process to the subsequence motion of internal parts; piston, connecting rod, and crank shaft. The acoustic transfer vector method is incorporated to effectively simulate the radiated noise field under the various operation conditions. A contribution analysis for the various excitations to the radiated noise is conducted. It is found that the firing pressure is the main source of the radiated noise, and so the structure of the cylinder can be modified to significantly reduce the radiated noise from the engine block.

Effect of Ohmic Heating on Pasting Property of Starches (옴가열이 전분의 Pasting 특성에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.4
    • /
    • pp.689-695
    • /
    • 2017
  • Ohmic heating is an internal heating method based on the principle that when an electrical current passes through food, electric resistance heat is uniformly generated internally by food resistance. Previous studies indicate that the thermal properties, external structure, internal structure, and swelling power of ohmic heat treated starch of various starches, such as potato, wheat, corn, and sweet potato, differed from those of conventional heating at the same temperature. In this study, the pasting property of starch, treated with ohmic and conventional heating, were measured by RVA (Rapid Visco-Analyzer). Our results show that as the ohmic heating temperature increased, the PV (Paste Viscosity) of the starch decreased significantly, and the PT (Pasting Temperature) increased. Changes in PV and PT indicate that the swelling of starch remains unchanged by ohm heating. The HPV (Hot Paste Viscosity), CPV (Cold Paste Viscosity) and SV (Setback Viscosity) of ohmic heated starch also differed from the conventional heated starch. The pasting property is similar to the viscosity curve of common cross-linked modified starch. In this experiment, we further confirm the similarity with modified starch and its usability.

Study on the Device for Pump Efficiency Measurement (펌프의 효율측정 장비에 관한 연구)

  • Bae, Cherl-O
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.33
    • /
    • pp.53-62
    • /
    • 2012
  • Pumps are used widely in feed water, cooling & heating system and process line of industrial and construction fields. They consume nearly 20% of the each nation's total electrical energy. But The management of pump energy wasn't controlled well. Their loss of energy is huge if they have been operated at low efficiency. The first buying cost of pump is small compare to the power consumption of pump, so we can recommend the suitable replace time and best operating condition of parts and pump to measure the pump efficiency. Pump efficiency is usually measured according to the two methods which they are called thermodynamic method and traditional technique. And we measured the pump efficiency using two methods using potable pump efficiency measurement device and compared the results with the real performance curve offered from pump maker.

  • PDF

Development and Assessment for Resilient Modulus Prediction Model of Railway Trackbeds Based on Modulus Reduction Curve (탄성계수 감소곡선에 근거한 철도노반의 회복탄성계수 모델 개발 및 평가)

  • Park, Chul-Soo;Hwang, Seon-Keun;Choi, Chan-Yong;Mok, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.805-814
    • /
    • 2008
  • This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Comparison of applicability of current transition temperature shift models to SA533B-1 reactor pressure vessel steel of Korean nuclear reactors

  • Yoon, Ji-Hyun;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1109-1112
    • /
    • 2017
  • The precise prediction of radiation embrittlement of aged reactor pressure vessels (RPVs) is a prerequisite for the long-term operation of nuclear power plants beyond their original design life. The expiration of the operation licenses for Korean reactors the RPVs of which are made from SA533B-1 plates and welds is imminent. Korean regulatory rules have adopted the US Nuclear Regulatory Commission's transition temperature shift (TTS) models to the prediction of the embrittlement of Korean reactor pressure vessels. The applicability of the TTS model to predict the embrittlement of Korean RPVs made of SA533B-1 plates and welds was investigated in this study. It was concluded that the TTS model of 10 CFR 50.61a matched the trends of the radiation embrittlement in the SA533B-1 plates and welds better than did that of Regulatory Guide (RG) 1.99 Rev. 2. This is attributed to the fact that the prediction performance of 10 CFR 50.61a was enhanced by considering the difference in radiation embrittlement sensitivity among the different types of RPV materials.

Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes

  • Oncu-Davas, Seda;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.227-242
    • /
    • 2019
  • Seismic isolation systems employ structural control that protect both buildings and vibration-sensitive contents from destructive effects of earthquakes. Structural control is divided into three main groups: passive, active, and semi-active. Among them, semi-active isolation systems, which can reduce floor displacements and accelerations concurrently, has gained importance in recent years since they don't require large power or pose stability problems like active ones. However, their seismic performance may vary depending on the variations that may be observed in the mechanical properties of semi-active devices and/or seismic isolators. Uncertainties relating to isolators can arise from variations in geometry, boundary conditions, material behavior, or temperature, or aging whereas those relating to semi-active control devices can be due to thermal changes, inefficiencies in calibrations, manufacturing errors, etc. For a more realistic evaluation of the seismic behavior of semi-active isolated buildings, such uncertainties must be taken into account. Here, the probabilistic behavior of semi-active isolated buildings under historical pulse-like near-fault earthquakes is evaluated in terms of their performance in preserving structural integrity and protecting vibration-sensitive contents considering aforementioned uncertainties via Monte-Carlo simulations of 3-story and 9-story semi-active isolated benchmark buildings. The results are presented in the form of fragility curves and probability of failure profiles.

Comparison of Predictive Value of Obesity and Lipid Related Variables for Metabolic Syndrome and Insulin Resistance in Obese Adults

  • Shin, Kyung A
    • Biomedical Science Letters
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2019
  • In this study, obese adults were compared for their ability to predict obesity and lipid related variables and their optimal cutoff values to predict metabolic syndrome and insulin resistance. In this study, 9,256 adults aged 20 years or older and less than 80 years old, who were in the Gyeonggi region from January 2014 to December 2016 and who were examined at a general hospital, were enrolled. The diagnostic criteria for obesity were WHO (World Health Organization), and BMI $25kg/m^2$ or more presented in the Asia-Pacific region. Metabolic syndrome was diagnosed based on the criteria of American Heart Association / National Heart, Lung, and Blood Institute (AHA / NHLBI). According to the results of receiver operating characteristic curve (ROC) analysis, Triglyceride / HDL-cholesterol (TG / HDL-C), Triglyceride and Glucose (TyG) index, lipid accumulation product (LAP) and visceral adiposity index (VAI) showed high predictive power for diagnosing metabolic syndrome. The diagnostic accuracy of LAP (AUC: 0.854) for males and VAI (0.888) for females was the highest. The optimal cutoff value of LAP was 42.71 for male and 35.44 for female, and the cutoff value of VAI was 1.92 for male and 2.15 for female. In addition, WHtR (waist to height ratio), TyG index, and LAP were used as predictors of insulin resistance in obese adults. Therefore, LAP and VAI were superior to other indicators in predicting metabolic syndrome in obese adults.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

Logic tree approach for probabilistic typhoon wind hazard assessment

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.607-617
    • /
    • 2019
  • Global warming and climate change are increasing the intensity of typhoons and hurricanes and thus increasing the risk effects of typhoon and hurricane hazards on nuclear power plants (NPPs). To reflect these changes, a new NPP should be designed to endure design-basis hurricane wind speeds corresponding to an exceedance frequency of $10^{-7}/yr$. However, the short typhoon and hurricane observation records and uncertainties included in the inputs for an estimation cause significant uncertainty in the estimated wind speeds for return periods of longer than 100,000 years. A logic-tree framework is introduced to handle the epistemic uncertainty when estimating wind speeds. Three key parameters of a typhoon wind field model, i.e., the central pressure difference, pressure profile parameter, and radius to maximum wind, are used for constructing logic tree branches. The wind speeds of the simulated typhoons and the probable maximum wind speeds are estimated using Monte Carlo simulations, and wind hazard curves are derived as a function of the annual exceedance probability or return period. A logic tree decreases the epistemic uncertainty included in the wind intensity models and provides reasonably acceptable wind speeds.

Generalized Support Vector Quantile Regression (일반화 서포트벡터 분위수회귀에 대한 연구)

  • Lee, Dongju;Choi, Sujin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.