• Title/Summary/Keyword: power circulation

Search Result 405, Processing Time 0.027 seconds

An Introduction to Speed Control System of Small Steam Turbine for Feed Water Supply in Power Plant (발전소 급수펌프 구동용 소형 터빈 제어시스템 소개)

  • Choi, In-Kyu;Kim, Jong-An
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1603-1604
    • /
    • 2007
  • The load of power plants changes every from time to time according to which steam flow of boiler changes. the feed water control is very important for the power plant to be operated in its stability conditions. In case of circulation type boiler, the instability of feed water control leads to instability of drum level control. The higher level of drum water can induce bad quality steam to go into turbine which means the possibility of damage. The lower level of drum water can induce the tubes of boiler water wall to be overheated. In case of once through type boiler, the instability of feed water control leads to bad cooling of superheaters. The less the feed water flow is, the more heated the superheater is. It is necessary for the turbine driving feed water pump to be controlled for the optimal feed water flow in the large capacity power plant. The speed of turbine is controled for the feed water flow. By the way, the optimal control of steam valve is necessary for the speed control of turbine. Therefore, the various kinds of the steam valve structures are introduced in this paper

  • PDF

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Analysis of Dynamic Behavior of Natural Circulation Heat Recovery Steam Generators

  • Kim, Sung-Ho;Lee, Chi-Hwan;Cho, Chang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.3-134
    • /
    • 2001
  • The dynamic behavior of heat recovery steam generators for combined cycle power plant is simulated in cases of startup and shutdown conditions. To ensure performance and design data, dynamic model of the HRSG was developed and dynamic simulation was performed. The dynamic analysis will undoubtedly reduce costs which is associated with plant startup and contribute to a smooth commercial plant operation.

  • PDF

A Brief Review on the Design Factors of Steam Generator U-Tube Assembly for CANDU Type Nuclear Power Plant

  • Park, Nam-Il;Park, June-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.321-326
    • /
    • 1996
  • During the plant operation, steam generator U-tube assembly will potentially be subject to adverse environmental conditions which can cause damages to them. This report addresses the major design factors of CANDU type steam generator which are intended to minimize the potential tube damages. Such factors include U-tube material, high circulation ratio, tube-to-tubesheet joint, tube support design. Also a few suggestions are presented for the design and performance improvement of CANDU type steam generators.

  • PDF

The Properties of Wind Analyzed by Observation of Tethered Sonde and Sodar in Gwangyang Coastal Area (Tethered Sonde와 Sodar 관측으로 분석한 광양만 지역의 풍환경 특성)

  • Lee, Hwa-Woon;Park, Soon-Young;Lim, Heon-Ho;Kim, Dong-Hyuk;Kim, Min-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.324-326
    • /
    • 2008
  • When we urgently need to develop and supply an alternative energy, wind power is growing with much interest because it has relative low cost of power and area of tower. To estimate the wind power resource, it is necessary to make an wind resource map first. On the study of wind resource map in the Korean peninsula, Southern coast was needed to investigate the possibility of developing wind power complex because of good wind resources. In this study, we made a vertical observation to analyze the properties of wind in coastal area. From tethered sonde observation, we knew that synoptic effect had an influence higher in second day than first day. This means local wind circulation is generated on first day but not second day. The local wind made vertical wind shear strong in first day. Also, there was large difference of wind speed between layers at night time by analysis of SODAR observation.

  • PDF

Characteristic Analysis of Hot Spot Temperature according to Cooling Performance Variation of Natural Ester Transformer (식물성 절연유 변압기의 냉각특성 변화에 따른 최고점온도 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.236-240
    • /
    • 2015
  • Natural ester has a higher biodegradability, flash and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester also has a higher pour point, viscosity, and water content. These characteristics hamper circulation and the electrical properties of oil-filled transformer. Thus, this paper applied electromagnetic-thermal-flow coupled analysis method to predict temperature distribution inside 154kV single phase power transformer using natural ester. It modeled in the actual appearance for the tank and winding of the power transformer to improve the accuracy of analysis and applied heat flow analysis that considered hydromechanics and heat transfer at the same time. It calculated the power loss, the main cause of temperature rise, from winding and core with electromagnetic analysis then used for the heat source for the heat flow analysis. It then compared the reasonability of result of measurement analysis based on the result acquired from temperature rise test using FBG sensor on the power transformer.

Analysis of the induced voltage on the GAS pipelines buried in parallel with 22.9kV distribution line (22.9kV 배전선로와 병행하는 가스배관의 유도성 유도전압 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.130-132
    • /
    • 2002
  • Because of the continuous growth of energy consumption and also the tendency to site power lines and pipelines along the same route, the close proximity of power lines and buried metallic pipelines has become more and more frequent. Therefore there has been and still is a slowing concern about possible hazards resulting from the influence of power lines on metallic pipelines. Underground pipelines that run parallel to or in close proximity to power lines are subjected to induced voltages caused by the time-varying magnetic fields produced by the power line currents. The induced electro- motive force cause currents circulation in the pipeline and voltages between the pipeline and surrounding earth. This paper analyzes the induced voltage on the gas pipelines buried in parallel with 22.9kV distribution lines. Their magnitude depends on the length of parallelism and on the distance between distribution lines and pipeline.

  • PDF

A High Efficiency MHD Lamp Ballast with a Frequency Controlled Synchronous Rectifier (주파수 가변 동기 정류기를 이용한 고효율 MHD 램프 안정기)

  • Hyun B.C.;Lee I.K.;Cho B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.11a
    • /
    • pp.71-75
    • /
    • 2004
  • In this paper, in order to develop a simple and high efficient ballast without an external igniter, a half-bridge type ballast with a coupled inductor and a frequency controlled synchronous rectifier is proposed. The internal LC resonance of the buck converter is used In generate a high voltage pulse for the ignition, and the coupled inductor filter is used for steady state ripple cancellation. Also, a synchronous buck converter is applied for the DC/DC converter stage. In order to improve the efficiency of the ballast, a frequency control method is proposed. This scheme reduces a circulation current and turn off loss of the MOSFET switch on the constant power operation, which results in increase of the efficiency of the ballast system about $4\%$, compared to a fixed frequency control. It consists a 2-stage version ballast with a PFC circuit. The results are verified with hardware experiments.

  • PDF

Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle (이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

Numerical Simulations of Water Circulation and Pollutant Transport near a Coastal Area of Wolsung NPPs (월성원전 연안역 해수유동 및 오염물 이동 수치실험)

  • Park, Geon-Hyeong;Kim, Ki-Chul;Min, Byung-Il;Lee, Jung-Lyul;Suh, Kyung-Suk
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.255-262
    • /
    • 2012
  • Numerical simulations were performed to evaluate the dispersion characteristics of the pollutant around a Wolsung coastal area at located nuclear power plants. Numerical experiments by using EFDC(Environmental Fluid Dynamics Code) showed good agreements by comparison with the time series and harmonic analysis of the tidal elevations. The released pollutants moved in north direction at flood tide and in south direction at ebb tide. The calculated salinity and temperatures showed good agreements with the observed results by NFRDI(National Fisheries Research & Development Institute). The water circulation due to the variations of the temperature, salinity and tidal components were analyzed to estimate the dispersion characteristics of the pollutant.