• Title/Summary/Keyword: power cable tunnel

Search Result 61, Processing Time 0.03 seconds

Wind tunnel study of wake-induced aerodynamics of parallel stay-cables and power conductor cables in a yawed flow

  • Jafari, Mohammad;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.617-631
    • /
    • 2020
  • Wake-induced aerodynamics of yawed circular cylinders with smooth and grooved surfaces in a tandem arrangement was studied. This pair of cylinders represent sections of stay-cables with smooth surfaces and high-voltage power conductors with grooved surfaces that are vulnerable to flow-induced structural failure. The study provides some insight for a better understanding of wake-induced loads and galloping problem of bundled cables. All experiments in this study were conducted using a pair of stationary section models of circular cylinders in a wind tunnel subjected to uniform and smooth flow. The aerodynamic force coefficients and vortex-shedding frequency of the downstream model were extracted from the surface pressure distribution. For measurement, polished aluminum tubes were used as smooth cables; and hollow tubes with a helically grooved surface were used as power conductors. The aerodynamic properties of the downstream model were captured at wind speeds of about 6-23 m/s (Reynolds number of 5×104 to 2.67×105 for smooth cable and 2×104 to 1.01×105 for grooved cable) and yaw angles ranging from 0° to 45° while the upstream model was fixed at the various spacing between the two model cylinders. The results showed that the Strouhal number of yawed cable is less than the non-yawed case at a given Reynolds number, and its value is smaller than the Strouhal number of a single cable. Additionally, compared to the single smooth cable, it was observed that there was a reduction of drag coefficient of the downstream model, but no change in a drag coefficient of the downstream grooved case in the range of Reynolds number in this study.

Review of the Conceptual Design for the Use of HTS Power Transmission Cable for a Metropolitan Area

  • Park, Sang-Bong
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.63-69
    • /
    • 2003
  • The necessity of compact high temperature superconducting cables is more keenly felt in densely populated metropolitan areas. Because the compact high-temperature superconducting cables can be installed in ducts and tunnels, thereby reducing construction costs and making the use of underground space more effective, the effect of introducing it to the power system will be huge. Seoul, Korea, is selected as a review model for this paper. The loads are estimated by scenario based on a survey and analysis of 345kV and 154kV power supply networks in this area. Based on this, the following elements for an urban transmission system are examined. (1) A method of constructing a model system to introduce high-temperature superconducting cables to metropolitan areas is presented. (2) A case study is conducted through the analysis of power demand scenarios, and the amount of high-temperature superconducting cable to be introduced by scenario is examined. (3) The economy involved in expanding existing cables and introducing high-temperature superconducting cables(ducts or tunnels) following load increase in urban areas is examined and compared., and standards for current cable ducts are calculated. (4) The voltage level that can be accommodated by existing ducts is examined.

The Electrical Conduction Properties of Polyethylene Thin Film for Power Cable with Manufacturing Methods (제작방법에 따른 전력케이블용 폴리에틸렌 박막의 전기전도특성)

  • 조경순;이용우;이수원;홍진웅
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.453-460
    • /
    • 1997
  • In order to investigate the electrical conduction properties of polyethylene thin film for power cable with manufacturing methods, the thickness of specimen was the 30, 100[${\mu}{\textrm}{m}$] of LDPE and 200[${\mu}{\textrm}{m}$] of XLPE were manufactured. The experimental condition for conduction properties was measured until the breakdown occurs at temperature ranges from 30 to 110[$^{\circ}C$] and the electric field from 1$\times$10$^3$to 5$\times$10$^{6}$ [V/cm]. As for increase of temperature, the current density of LDPE was increased with constant ratio in low field, but changes with exponential function in high electric field. The tunnel current of pre-breakdown region is shifted toward low field as much as thermal excitation energy. At low electric field, the XLPE showed dominant electrical conduction properties by thermal excitation, and transformation of the electron was resisted by the crystal at high electric field.

  • PDF

Analysis on the behavior of shield TBM cable tunnel: The effect of the distance of backfill grout injection from the end of skin plate (뒷채움 주입 거리에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.213-224
    • /
    • 2014
  • Recently, tunnelling with TBM is getting popular for the construction of cable tunnel in urban area. Mechanized tunnelling method using shield TBM has various advantages such as minimization of ground settlement and prevention of vibration induced by blasting that should be accompanied by conventional tunnelling. In Korea, earth pressure balance (EPB) type shield TBM has been mainly used. Despite the popularity of EPB shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Especially, the effect of backfill grout injection on the behavior of cable tunnel driven by shield TBM is investigated in this study. Tunnelling with shield TBM is simulated using 3D FEM. The distance of backfill grout injection from the end of shield skin varies. Sectional forces such as axial force, shear force and bending moment are monitored. Vertical displacement at the ground surface is measured. Futhermore, the relation between volume loss and the distance of backfill grout injection from the end of skin plate is derived. Based on the stability analysis with the results obtained from the numerical analysis, the most appropriate injection distance can be obtained.

Exploration of underground utilities using method predicting an anomaly (이상대 판정기법을 활용한 지하매설물 탐사)

  • Ryu, Hee-Hwan;Kim, Kyoung-Yul;Lee, Kang-Ryel;Lee, Dae-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • Rapid urbanization and industrialization have caused increased demand for underground structures such as cable, and other utility tunnels. Recently, it has become very difficult to construct new underground structures in downtown areas because of civil complaints, and engineering problems related to insufficient information about existing underground structures, cable tunnels in particular. This lack of information about the location and direction-of-travel of cable tunnels is causing many problems. To solve these problems, this study was focused on the use of geophysical exploration of the ground in a way that is theoretically, different from previous electrical resistivity surveys. An electric field analysis was performed on the ground with cable tunnels using Gauss' law and the Laplace equation. The electrical resistivity equation, which is a function of the cable tunnel direction, the cable tunnel location, and the electrical conductivity of the cable tunnel, can be obtained through electrical field analysis. A field test was performed for the verification of this theoretical approach. A field test results provided meaningful data.

A Study on the Heat Transfer Analysis based on Insulation Thickness Variation of Cable Splice Part (지중케이블 접속부의 절연층 두께변화에 따른 열해석 연구)

  • 최규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.246-255
    • /
    • 1998
  • The cable cooling through installing the cooling pipe along the transmission cable becomes universal in foreign leading countries, especially in Japan, and, there are so many study results inside and outside of the country. However, the remarkable study result for cooling method of cable splice part is not achieved in spite of its importance. This paper is, therefore, carrys out detailed heat transfer analysis of existing 154kV underground cable-splice, depending on the insulation thickness variation when it is installed in manhole of tunnel whose temperature is maintained as $10^{\circ}C$ using refrigerator. This paper study also the cooling method of underground cable splice based on this result.

  • PDF

Power Tunnel Monitoring and Diagnosis Based On Multiple Attribute Making Decision with Uncertainty (불확실성을 고려한 다중요소 의사 결정기반의 지중전력구 감시 및 진단)

  • Lee, Gi-Hea;Kim, Sang-Tae;Lee, Ji-Hoon;Kim, Jong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.349-350
    • /
    • 2015
  • Traditional power tunnel monitoring and diagnosis system provides simple alert in accordance with limits which set by operator using various field installed various sensor measurements. System's algorithm is too simple and it has uncertainty of sensor with error. In this paper, proposed algorithm give operator verification using installed sensor measurements such as environmental sensors for fire prevention because of cable overheat in the power tunnel.

  • PDF

A Study on the Optimum Cooling Span of the Underground Power Transmission Cable Equipped by a Forced Cooling System (전력구내 지중케이블 강제냉각에서의 적정냉각구간에 관한 연구)

  • Lee, J.H.;Chung, S.H.;Kim, J.G.;Park, M.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.49-62
    • /
    • 1990
  • The forced cooling system has been widely applied to passing more electric current in the underground power transmission cable technology. In this paper, the optimum cooling span of the in-trough-indirect water cooling method within an electric tunnel was investigated. A parametric study was performed for the cable currents, the coolant flow rates, and the coolant inlet temperatures. As a result, the temperature of the inlet air has been found as the most important parameter in determination of the optimum cooling span.

  • PDF

A Dynamic Rating System for Power Cables (I) - Real Time CTM(Conductor Temperature Monitoring) (전력 케이블 실시간 허용전류산정 시스템에 관한 연구 (I) - 실시간 도체 온도 추정 시스템)

  • 남석현;이수길;홍진영;김정년;정성환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.414-420
    • /
    • 2003
  • The domestic needs for larger capability of power sources are increasing to cope with the expanding power load which results from the industrial developments & the progressed life style. In summer, the peak load is mainly due to the non-industrial reasons such as air-conditioners and other cooling equipments. To cover the concentrated peak load in stable, the power transmission lines should be more constructed and efficiently operated. The ampacity design of the underground cable system is generally following international standards such as IEC287, IEC60853 and JCS168 which regards the shape of 100% daily full power loads. It is not so efficient to neglect the real shapes of load curves generally below 60~70% of full load. The dynamic (real time) rating system tends to be used with the measured thermal parameters which make it possible to calculate the maximum ampacity within required periods. In this paper, the CTM(Conductor Temperature Monitoring) which is the base of dynamic rating systems for tunnel environment is proposed by a design of lumped thermal network ($\pi$-type thermal model) and distribution temperature sensor attached configuration, including the estimation results of its performances by load cycle test on 345kV single phase XLPE cable.

Analysis of arc-energy with joint box type through a field test (인공지락 실증시험을 통한 접속함 종류별 아크에너지 해석)

  • Kang, J.W.;Jang, T.I.;Hong, D.S.;Lee, D.I.;Kim, H.D.;Oh, C.H.;Lim, H.E.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.715-717
    • /
    • 2005
  • This paper analyses the arc-energy with joint box type through a field test on underground power OF cable. In order to obtain the data, the actual proof test using short-circuit generation for real scale power transmission tunnel carried out. This paper is expected to contribute the fire accident prevention on underground power cable systems and the believability improvement of electric power facilities.

  • PDF