• Title/Summary/Keyword: power and energy consumption

Search Result 2,012, Processing Time 0.028 seconds

Load-Adaptive Address Energy Recovery Technique for Plasma Display Panel

  • Lee Jun-Yeong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.192-200
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, th e technique shows the minimum address power consumption according to various displayed images, different from prior methods operating in fixed mode regardless of images. Test results with 50' HD single- scan PDP(resolution : $1366{\times}768$) show that less than 350ns of recovery time is successfully accomplished and about $54\%$ of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF

Energy Consumption - Economic Growth Nexus in Vietnam: An ARDL Approach with a Structural Break

  • NGUYEN, Ha Minh;NGOC, Bui Hoang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.1
    • /
    • pp.101-110
    • /
    • 2020
  • Energy and energy consumption play an important role in strategies for socio-economic development of the country. In 1995, Vietnam officially entered the 500 kV North-South transmission power line exploits, with a full length of 1,487 km. The purpose of this study is to investigate the breakpoint and the transition effect of energy consumption to economic growth in Vietnam during the period of 1980-1994, and 1995-2016. The Autoregressive Distributed Lag (ARDL) approach and the Bounds test are used to test for the presence of cointegration, whereas the Toda and Yamamoto procedure Granger causality test is used for the direction of causality. The result of the Bounds test validates the existence of cointegration among the included variables. The empirical results provide evidence that energy consumption has a positive impact on the economic growth of Vietnam in the long run. The causality test shows that there is bi-directional causality between energy consumption and economic growth, supported feedback hypothesis. There is a breakpoint in 1995 and the contribution of energy consumption in economic growth in the period of 1995-2016 is lower than the stage 1980-1994. This study suggests Government authorities explore new sources of energy to achieve sustainable economic development in the long run.

Residential Solar Cell System by driving of High Efficiency Inverter

  • Kwak Dong-Kurl;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.687-691
    • /
    • 2001
  • With today's global environmental and energy problems, high expectations exist for solar power generation to reduce carbon dioxide generated by the consumption of fossil fuels. On the other hand, power consumption in residential homes is increasing every year. Among the many household appliances, the power demand for air conditioners increases dramatically during the summer, particularly in the afternoons. As this pattern closely matches the output pattern of solar cells, it should be possible to combine a photovoltaic array with an air conditioner to decrease the energy consumption within the home. We have developed a residential solar-powered air conditioner that operates through a combination of photovoltaic array and commercial power. In this paper, the configuration and specification of the residential solar-powered system are described to a novel high efficiency inverter using a ZVCS boost converter. And the performance evaluations of the solar-powered air conditioner are examined by the analysis of a new tracking controller with a maximum power $P_{max}$ detection of solar cell.

  • PDF

A Study on the Energy Consumption Cost in the Winter and Calorific Value by Insulated Gang-form (단열갱폼 적용에 따른 동절기 보양비 사용량 및 발열량 검토에 관한 실험적 연구)

  • Nam, Kyung-Yong;Choi, Suk;Ahn, Sung-Jin;Lim, Myung-Kwan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • This paper aims to examine the insulation performance of insulated gang form by changing the energy (power) consumption and concrete calorific value to assist in concrete protection in cold weather. According to the test results, the general gang form will generate three times the energy (power) consumption for 12 hours after the concrete is poured. In contrast, insulated gang foam consumed no energy (power) for 21 hours after pouring. The final power consumption was 3.7 times higher than that of the general gang form, confirming the improved performance of insulated gang form with regard to energy (power) consumption. The calorific value examination shows that the calorific value changes significantly according to the change of outside temperature after concrete placement in the case of the general gang form. However, in the case of the insulated gang form, only a slight heat loss occurred in the part of the frame, and it showed a constant heating pattern from the concrete casting to the demolding of the mold.

On Effective Slack Reclamation in Task Scheduling for Energy Reduction

  • Lee, Young-Choon;Zomaya, Albert Y.
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.175-186
    • /
    • 2009
  • Power consumed by modern computer systems, particularly servers in data centers has almost reached an unacceptable level. However, their energy consumption is often not justifiable when their utilization is considered; that is, they tend to consume more energy than needed for their computing related jobs. Task scheduling in distributed computing systems (DCSs) can play a crucial role in increasing utilization; this will lead to the reduction in energy consumption. In this paper, we address the problem of scheduling precedence-constrained parallel applications in DCSs, and present two energy- conscious scheduling algorithms. Our scheduling algorithms adopt dynamic voltage and frequency scaling (DVFS) to minimize energy consumption. DVFS, as an efficient power management technology, has been increasingly integrated into many recent commodity processors. DVFS enables these processors to operate with different voltage supply levels at the expense of sacrificing clock frequencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off between the quality of schedules and energy consumption. Our algorithms effectively balance these two performance goals using a novel objective function and its variant, which take into account both goals; this claim is verified by the results obtained from our extensive comparative evaluation study.

Potential of Agricultural Residues for Small Biomass Power Generation in Thailand

  • Panklib, Thakrit
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • The demand for energy in Thailand has been continually increasing as the economic and social country grows. Approximately 60% of Thailand's primary energy is imported, mostly petroleum products. In 2008 Thailand's total energy consumption was 80,971 ktoe and the net price of energy imported was up to 1,161 billion Baht which is equivalent to 12.8% of GDP at the current price. The energy consumption or energy demand has been growing at an annual compounded growth rate of 6.42% and the peak electric power demand and electricity consumption was recorded at 22,568 MW and 148,264 GWh and grew at a rate of 7.0% and 7.5% per annum during the period from 1989 to 2008. The gross agriculture production in 2008 was recorded at 135.4 Mt which represents agriculture residue for energy at 65.73 Mt, which is equivalent to energy potential of about 561.64 PJ or 13,292 ktoe an increase in average of 5.59% and 5.44% per year respectively. The agricultural residues can converted to 15,600 GWh/year or 1,780 MW of power capacity. So, if government sector plan to install small biomass gasification for electricity generation 200 kW for Community. The residue agricultural is available for 8,900 plants nationwide. The small biomass power generation for electricity generation not only to reduce the energy imports, it also makes the job and income for people in rural areas as well. This paper's aim is to report the energy situation in Thailand and has studied 5 main agricultural products with high residue energy potential namely sugarcane, paddy, oil palm, cassava, and maize appropriate for small electricity production. These agricultural products can be found planted in many rural areas throughout Thailand. Finally, discuss the situation, methods and policies which the government uses to promote small private power producers supplying electricity into the grid.

Energy Saving in Boom Motion of Excavators using IMV (IMV를 사용한 유압굴삭기 붐 동작의 에너지 절감)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Energy consumption of conventional hydraulic excavators controlled by MCV is considerable when negative load is applied because the meter orifice and meter-out orifice are machined in one spool. Therefore, IMV is introduced to save energy use of hydraulic excavators, but existing hydraulic excavators have various advantages so it is difficult to make a clear comparison. In this study, we compare the use of an existing MCV excavator that has many advantages such as negative control, and IMV for boom up and down operation, and if IMV is used to save energy, we will examine the cause. If possible, for comparability under the same conditions, both systems use pressure balance valves to minimize power consumption when not using power in the actuator. The orifice area at each notch of each valve is calculated, and energy saving is verified by comparing the two systems through simulation.

Nuclear energy consumption, nuclear fusion reactors and environmental quality: The case of G7 countries

  • Cakar, Nigar Demircan;Erdogan, Seyfettin;Gedikli, Ayfer;Oncu, Mehmet Akif
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1301-1311
    • /
    • 2022
  • Global climate change brings environmental quality sensitivity, especially in developed countries. Developed countries use non-renewable energy sources intensively both in their own countries and in other countries, they make productions that cause an enormous rate of increase in CO2 emissions and unsustainable environmental costs. This has increased the interest in environmentally friendly alternative energy sources. The aim of this study is to investigate the impact of nuclear energy consumption and technological innovation on environmental quality in G7 countries using annual data over the period 1970-2015. The Panel Threshold Regression Model was used for the analysis. Empirical findings have indicated that the relationship between nuclear energy consumption and carbon emissions differs according to innovation for nuclear power plants. It was also concluded that nuclear energy consumption reduces carbon emissions more after a certain level of innovation. This result shows that the increase in innovative technologies for nuclear power plants not only increases energy efficiency but also contributes positively to environmental quality.

Stochastic Gradient Descent Optimization Model for Demand Response in a Connected Microgrid

  • Sivanantham, Geetha;Gopalakrishnan, Srivatsun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.97-115
    • /
    • 2022
  • Smart power grid is a user friendly system that transforms the traditional electric grid to the one that operates in a co-operative and reliable manner. Demand Response (DR) is one of the important components of the smart grid. The DR programs enable the end user participation by which they can communicate with the electricity service provider and shape their daily energy consumption patterns and reduce their consumption costs. The increasing demands of electricity owing to growing population stresses the need for optimal usage of electricity and also to look out alternative and cheap renewable sources of electricity. The solar and wind energy are the promising sources of alternative energy at present because of renewable nature and low cost implementation. The proposed work models a smart home with renewable energy units. The random nature of the renewable sources like wind and solar energy brings an uncertainty to the model developed. A stochastic dual descent optimization method is used to bring optimality to the developed model. The proposed work is validated using the simulation results. From the results it is concluded that proposed work brings a balanced usage of the grid power and the renewable energy units. The work also optimizes the daily consumption pattern thereby reducing the consumption cost for the end users of electricity.

A Study on File Sharing Mechanism for Network Energy Efficiency: Designing & Implementation Proxying System (네트워크 에너지 효율향상을 고려한 File Sharing 기술 연구)

  • Yun, Jung-Mee;Lee, Sang-Hak
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.2
    • /
    • pp.135-140
    • /
    • 2011
  • Currently, studies have show that the network related energy consumption are increasing. and part of overall energy consumption of our society are too. So, that is important to look for energy-efficient network applications and protocols. A most of network energy consumption are due to network edge devices. in this paper, in order to cut down the emissions of carbon dioxide from ICT business, which contributes 2% of the global energy consumption, it is necessary to understand energy consumption in peer-to-peer system. In this paper, in this paper we propose a architecture based on the introduction of a p2p proxy. The model is analyzed analytically and numerically to reveal how these factors influence the overall power consumption in both steady state and flash crowd information exchange scenarios. Specifically, our results show that the proxy-based solution can provide up to 50% reduction in the energy consumption and, at the same time, a significant reduction in the average file download time.