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Abstract: Power consumed by modern computer systems, particularly servers in data centers has al-
most reached an unacceptable level. However, their energy consumption is often not justifiable when 
their utilization is considered; that is, they tend to consume more energy than needed for their comput-
ing related jobs. Task scheduling in distributed computing systems (DCSs) can play a crucial role in 
increasing utilization; this will lead to the reduction in energy consumption.  In this paper, we address 
the problem of scheduling precedence-constrained parallel applications in DCSs, and present two en-
ergy-conscious scheduling algorithms. Our scheduling algorithms adopt dynamic voltage and fre-
quency scaling (DVFS) to minimize energy consumption. DVFS, as an efficient power management 
technology, has been increasingly integrated into many recent commodity processors. DVFS enables 
these processors to operate with different voltage supply levels at the expense of sacrificing clock fre-
quencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off be-
tween the quality of schedules and energy consumption. Our algorithms effectively balance these two 
performance goals using a novel objective function and its variant, which take into account both goals; 
this claim is verified by the results obtained from our extensive comparative evaluation study. 
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1. Introduction 
 
Until recently energy issues have been mostly dealt with 

by advancements in hardware technologies [1], such as 
low-power CPUs, solid state drives, and energy-efficient 
computer monitors. Energy-aware resource management 
has emerged as a promising approach for sustainable/green 
computing. Although many algorithms and strategies have 
been developed, their application is quite restricted for ex-
ample, to systems such as battery-powered devices, homo-
geneous computing systems [2-5] or single-processor sys-
tems [6]. In addition to system homogeneity, tasks are of-
ten homogeneous or independent.  

The energy consumption issue in distributed computing 
systems (DCSs) raises various monetary, environmental 
and system performance concerns. A recent study on 
power consumption by servers [7] shows that electricity 
use for servers worldwide—including their associated 
cooling and auxiliary equipment—in 2005 cost 7.2 billion 
US dollars. The study also indicates that electricity con-
sumption in that year had doubled compared with con-
sumption in 2000. Clearly, there are environmental issues 

with the generation of electricity. The number of transistors 
integrated into today’s Intel Itanium 2 processor reaches 
nearly 1 billion. If this rate continues, the heat (per square 
centimeter) produced by future Intel processors would ex-
ceed that of the surface of the sun [8]; this implies the pos-
sibility of worsening system reliability, eventually resulting 
in poor system performance.  

Due to the importance of energy consumption, various 
techniques including dynamic voltage and frequency scal-
ing (DVFS), resource hibernation, and memory optimiza-
tions have been investigated and developed [1]. DVFS 
among these has been proven to be a very promising tech-
nique with its demonstrated capability for energy savings 
(e.g., [3,4,9]). For this reason, we adopt this technique and 
it is of particular interest to this study. DVFS enables proc-
essors to dynamically adjust voltage supply levels (VSLs) 
aiming to reduce power consumption; however, this reduc-
tion is achieved at the expense of clock frequencies.  

Since precedence-constrained parallel applications in 
scientific and engineering fields are the most typical appli-
cation model, the problem of scheduling these applications 
(task scheduling) both on homogeneous and heterogeneous 
computing systems has been studied extensively over the 
past few decades, e.g., [10-13]. However, most efforts in 
task scheduling have focused on two issues, the minimiza-
tion of application completion time (makespan/schedule 
length) and time complexity; in other words, the main ob-
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jective of a task scheduling algorithm is the generation of 
the optimal schedule for a given application with the 
minimal amount of scheduling time. It is only recently that 
much attention has been paid to energy consumption in 
scheduling, particularly on DCSs.  

In this paper, we address the task scheduling problem on 
DCSs comprised of heterogeneous processors and present 
the ECS algorithm with its extension (ECSmakespan). A prior 
work of ECS can be found in [14]. While the extended ver-
sion still takes into account both makespan and energy 
consumption, its focus is more on the reduction in 
makespan; hence, the name ECSmakespan. This design focus 
may lead to better energy efficiency as low-power proces-
sors are becoming more prevalent. The heuristics can eas-
ily be applied to loosely coupled DCSs (e.g., grids) using 
advance reservation and various sets of frequency-voltage 
pairs. ECS and ECSmakespan are devised with the incorpora-
tion of DVFS to reduce energy consumption; this implies 
that there is a trade-off between the quality of schedules 
(makespans) and energy consumption. A novel objective 
function used in the main scheduling phase of each of our 
algorithms effectively deals with this trade-off balancing 
these two performance considerations. In addition, the en-
ergy reduction phase using the makespan-conservative 
energy reduction technique (MCER) is incorporated into 
ECS and ECSmakespan. In this phase, the current schedule 
generated in the scheduling phase is scrutinized to identify 
whether any changes to the schedule further reduce energy 
consumption without an increase in makespan. The low 
time complexity of our algorithms should also be noted. 
The results obtained from our extensive comparative 
evaluation study clearly show that ECS and ECSmakespan 
outperform previous scheduling algorithms in terms of 
energy consumption by a noticeable margin. Their sched-
ules are also shorter in makespan than those of other algo-
rithms.  

The remainder of the paper is organized as follows. Sec-
tion 2 describes the application, system, energy and sched-
uling models used in this paper. Section 3 discusses the 
related work. ECS and ECSmakespan algorithms are presented 
in Section 4 followed by a discussion of its performance in 
Section 5. The results of our comparative evaluation study 
are presented in Section 6. In Section 7, we make our con-
clusion.  

 
 

2. Models 
 
In this section, we describe the system, application, en-

ergy and scheduling models used in our study.  
 

2.1 System model 
 
The target system used in this work consists of a set P of 

p heterogeneous processors/machines that are fully inter-
connected. Each processor pj∈P is DVFS-enabled; in other 
words, it can operate in different VSLs (i.e., different clock 
frequencies). For each processor pj∈P, a set Vj of v VSLs is 
random and uniformly distributed among four different sets 
of VSLs (Table 1); this ensures that our system model is 
realistic. Since clock frequency transition overheads take a 
negligible amount of time (e.g., 10µs-150µs [15], [16]), 
they are not considered in our study. The inter-processor 
communications are assumed to perform with the same 
speed on all links without contentions. It is also assumed 
that a message can be transmitted from one processor to 
another while a task is being executed on the recipient 
processor that is possible in many systems. 

 

 
 

2.2 Application model 
 

Parallel programs, in general, can be represented by a di-
rected acyclic graph (DAG). A DAG, G = (N, E), consists 
of a set N of n nodes and a set E of e edges. A DAG is also 
called a task graph or macro-dataflow graph. In general, 
the nodes represent tasks partitioned from an application; 
the edges represent precedence constraints. An edge (i, j) ∈ 
E between task ni and task nj also represents inter-task 
communication. In other words, the output of task ni has to 
be transmitted to task nj in order for task nj to start its exe-
cution. A task with no predecessors is called an entry task, 
nentry, whereas an exit task, nexit, is one that does not have 
any successors. Among the predecessors of a task ni, the 
predecessor which completes the communication at the 
latest time is called the most influential parent (MIP) of the  

 

Table 1. Voltage-relative speed pairs 
 

Pair 1 Pair 2 Pair 3 Pair 4 

level
vk

rel. 
speed 
(%) 

vk

rel. 
speed 
(%) 

vk 
rel. 

speed 
(%) 

vk

rel. 
speed 
(%) 

0 1.75 100 1.50 100 2.20 100 1.50 100 
1 1.40 80 1.40 90 1.90 85 1.20 80 
2 1.20 60 1.30 80 1.60 65 0.90 50 
3 0.90 40 1.20 70 1.30 50   
4   1.10 60 1.00 35   
5   1.00 50     
6   0.90 40     
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task denoted as MIP(ni). The longest path of a task graph is 
the critical path (CP). 

The weight on a task ni denoted as wi represents the 
computation cost of the task. In addition, the computation 
cost of the task on a processor pj, is denoted as wi,j and its 

average computation cost is denoted as iw .  

The weight on an edge, denoted as ci,j represents the 
communication cost between two tasks, ni and nj. However, 
a communication cost is only required when two tasks are 
assigned to different processors. In other words, the com-
munication cost when tasks are assigned to the same proc-
essor can be ignored, i.e., 0.  

The earliest start time and the earliest finish time of a 
task ni on a processor pj is defined as 

 

⎩
⎨
⎧

=),( ji pnEST  0 
inMIPki i

cpnMIPEFT ),()),(( +  
if ni = nentry 

Otherwise   (1)
 

=),( ji pnEFT jiji wpnEST ,),( +          (2)
 
Note that the actual start and finish times of a task ni on 

a processor pj, denoted as AST(ni, pj) and AFT(ni, pj) can be 
different from its earliest start and finish times, EST(ni, pj) 
and EFT(ni, pj), if the actual finish time of another task 
scheduled on the same processor is later than EST(ni, pj).  

In the case of adopting task insertion the task can be 
scheduled in the idle time slot between two consecutive 
tasks already assigned to the processor as long as no viola-
tion of precedence constraints is made. This insertion 
scheme would contribute in particular to increasing proces-
sor utilization for a communication intensive task graph 
with fine-grain tasks. 

A simple task graph is shown in Fig. 1 with its details in 
Tables 2 and 3. The values presented in Table 2 are com-
puted using two frequently used task prioritization methods, 
t-level and b-level. The t-level of a task is defined as the 

summation of the computation and communication costs 
along the longest path of the node from the entry task in 
the task graph. The task itself is excluded from the compu-
tation. In contrast, the b-level of a task is computed by add-
ing the computation and communication costs along the 
longest path of the task from the exit task in the task graph 
(including the task). The b-level is used in this study. 

The communication to computation ratio (CCR) is a 
measure that indicates whether a task graph is communica-
tion intensive, computation intensive or moderate. For a 
given task graph, it is computed by the average communi-
cation cost divided by the average computation cost on a 
target system. 
 

2.3 Energy model 
 

Our energy model is derived from the power consump-
tion model in complementary metal-oxide semiconductor 
(CMOS) logic circuits. The power consumption of a 
CMOS-based microprocessor is defined to be the summa-
tion of capacitive, short-circuit and leakage power. The 
capacitive power (dynamic power dissipation) is the most 
significant factor of the power consumption. The capaci-
tive power (Pc) is defined as 

 
Pc = ACV2f    (3) 

 
where A is the number of switches per clock cycle, C is 

the total capacitance load, V is the supply voltage, and f is 
the frequency. Equation 3 clearly indicates that the supply 
voltage is the dominant factor; therefore, its reduction 

 
Fig. 1. A simple task graph 

Table 2. Task Priorities 
Task b-level t-level 

0 101.33 0.00 
1 66.67 22.00 
2 63.33 28.00 
3 73.00 25.00 
4 79.33 22.00 
5 41.67 56.33 
6 37.33 64.00 
7 12.00 89.33 

 
Table 3. Computation cost with VSL 0 

Task p0 p1 p2 
0 11 13 9 
1 10 15 11 
2 9 12 14 
3 11 16 10 
4 15 11 19 
5 12 9 5 
6 10 14 13 
7 11 15 10 
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would be most influential to lower power consumption. 
The energy consumption of the execution of a precedence-
constrained parallel application used in this study is de-
fined as 
 

∑∑
==

=⋅=
n

i
ii

n

i
ii wVwfACVE

1

*2

1

*2 α     (4) 

 
where Vi

  is the supply voltage of the processor on which 
task ni executed, and wi

* is the computation cost of task ni 
(the amount of time taken for ni’s execution) on the sched-
uled processor. 
 

2.4 Scheduling model 
 

The task scheduling problem in this study is the process 
of allocating a set N of n tasks to a set P of p processors—
without violating precedence constraints—aiming to mini-
mize makespan with energy consumption as low as possi-
ble. The makespan is defined as M=max{AFT(nexit)} after 
the scheduling of n tasks in a task graph G is completed. 
Although the minimization of makespan is crucial, tasks of 
a DAG in our study are not associated with deadlines as in 
real-time systems. 

 
 

3. Related Work 
 
In this section, we present two noteworthy works in task 

scheduling, particularly for DCSs, and then scheduling 
algorithms with power/energy consciousness. Since there 
are only few existing algorithms comparable to our study 
in terms of the explicit consideration of the energy issue in 
the task scheduling problem on DCSs, we discuss the clos-
est possible algorithms—developed for homogeneous sys-
tems and/or with independent tasks. 

 
3.1 Scheduling in HCSs 
 

Due to the NP-hard nature of the task scheduling prob-
lem in general cases [17], heuristics are the most popularly 
adopted scheduling model, and they deliver good solutions 
in less than polynomial time. Heuristics are characterized 
by their essentially deterministic operation: the choice of 
solutions to a scheduling problem is not stochastic. Among 
the different heuristic techniques, list scheduling, cluster-
ing-based scheduling and guided random search are the 
three most prevalent approaches. List scheduling heuristics 
are the dominant heuristic model. This is because empiri-
cally, list scheduling algorithms tend to produce competi-

tive solutions with lower time complexity compared to 
algorithms in the other categories [18]. 
The HEFT algorithm [12] is highly competitive in that it 

generates a schedule length comparable to other scheduling 
algorithms, with a low time complexity. It is a list-
scheduling heuristic consisting of the two typical phases of 
list scheduling (i.e., task prioritization and processor selec-
tion) with task insertion. 
Before scheduling begins, the b-level values of all tasks in 

a task graph are computed and arranged in a scheduling list 
in decreasing order of their b-level values. Each task is 
then scheduled, starting from the first task in the schedul-
ing list. In the processor selection phase, the processor, pj, 
on which the finish time of a task ni, EFT(ni, pj) is mini-
mized, is selected using an insertion-based policy. In other 
words, a task can be inserted into the earliest time slot be-
tween two already-scheduled tasks on a processor if the 
precedence constraint of that task is not violated and the 
slot is large enough to accommodate the task. The time 
complexity of HEFT is on the order of O(n log n+(e+n)p). 
The DBUS algorithm [19] is a duplication-based schedul-

ing heuristic that first performs a CP-based listing for tasks 
and schedules them with both task duplication and inser-
tion. The experimental results in [19] show its attractive 
performance, especially for communication-intensive task 
graphs. 
As its name implies, DBUS schedules tasks in a task 

graph, traversing it in a bottom-up fashion. In the listing 
phase, it first computes the b-level, t-level and st-level val-
ues of the tasks and identifies the CP tasks. The CP tasks 
are stored in a list in decreasing t-level order along with the 
child tasks of each of these CP tasks, such that the child 
tasks of a CP task precede the CP task. These child tasks 
are stored in decreasing st-level order. The only distinction 
between the t- and st-levels is that communication costs are 
not considered in the st-level. The order of the tasks in the 
list determines the scheduling order. 
In the scheduling phase, each task in the list is scheduled 

and duplicated as many times as either the number of its 
child tasks already scheduled or the number of proces-
sors—whichever is less. The processor to which a child 
task is assigned is regarded as a processor that should be 
covered. For each processor to be covered, a copy of the 
task to be scheduled is assigned to a particular processor on 
which its completion time is minimized, and the child task 
on the former processor can then start as it was originally 
scheduled. This process repeats until all processors to be 
covered are actually covered. It is possible that a single 
task assignment can cover more than one processor. One 
drawback of this duplication scheme is that there might be 
a significant increase in schedule length if the number of 
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processors is very small compared to the number of tasks; 
this is because, although redundant duplications of a task 
might be effective for the task itself, its replicas can cause a 
‘cascade effect’, in which the replicas invoke too many 
subsequent duplications. The time complexity of DBUS is 
in the order of O(n2p2). 
 

3.2 Scheduling in HCSsaScheduling with energy con-
sciousness 

 
Since CPUs are the major source of power consumption 

in DCSs [4], many microprocessor manufacturers includ-
ing Intel, AMD, Motorolla and Transmeta have put a lot of 
effort into low-power processor design focusing on DVFS 
[15,20-22]. DVFS is a promising energy saving technique 
that can be incorporated into scheduling; and many sched-
uling algorithms (e.g., [5,23]) using DVFS have been pro-
posed for different problems. However, the majority of 
previous studies on scheduling that take into consideration 
energy consumption are conducted on homogeneous com-
puting systems [2-5,23] or single-processor systems [6]. In 
addition to system homogeneity, tasks are generally homo-
geneous and independent. Slack management/reclamation 
is a frequently adopted technique with DVFS. 
In [3], several different scheduling algorithms using the 

concept of slack sharing among DVFS-enabled processors 
were proposed. The target system model and the task 
model are homogeneous multiprocessor systems, and het-
erogeneous independent and dependent real-time tasks 
with hard deadline, respectively. The rationale behind the 
algorithms is to utilize idle (slack) time slots of processors 
lowering voltage supply (frequency/speed). This technique 
is known as slack reclamation. These slack time slots occur, 
due to earlier completion (than worst case execution time) 
and/or dependencies of tasks. The scheduling algorithms 
for both independent and dependent tasks in [3] adopt 
global scheduling in which all tasks wait in a global queue 
and are dispatched based on their priorities. The work in 
[3] has been extended in [23] with AND/OR model appli-
cations. Since the target system for both works is shared-
memory multiprocessor systems, communication between 
dependent tasks is not considered. 
In [4], two voltage scaling algorithms for periodic, spo-

radic, and aperiodic tasks on a dynamic priority single-
processor system were proposed. They are more practical 
compared with many existing DVFS algorithms in that a 
priori information on incoming tasks is not assumed to be 
available until the tasks are actually released. 
Rountree et al. in [24] developed a system based on linear 

programming (LP) that exploits slack using DVS (i.e., 
slack reclamation). Their LP system aims to deliver near-

optimal schedules that tightly bound optimal solutions. It 
incorporated allowable time delays, communication slack, 
and memory pressure into its scheduling. The LP system 
mainly deals with energy reduction for a given pre-
generated schedule with a makespan constraint as in most 
existing algorithms. 

Another two scheduling algorithms for bag-of-tasks 
(BoT) applications on clusters were proposed in [2]. Tasks 
in a BoT application are typically independent and homo-
geneous, yet run with different input parameters/files. In 
[2], deadline constraints are associated with tasks for the 
purpose of quality control. The two algorithms differ in 
terms of whether processors in a given computer cluster are 
time-shared or space-shared. Computer clusters in this pa-
per are composed of homogeneous DVFS-enabled proces-
sors.  
 
 

4. Task scheduling with energy consciousness 
 
In this section, we begin by discussing design focuses of 

our algorithms formulating an objective function for each 
of our algorithms, and describe algorithmic details.  
 

4.1 Characterization of design objectives 
 

As in most multi-objective optimization problems, the 
goal in our task scheduling problem is to find Pareto-
optimal solutions since the performance objectives of the 
problem are most likely to be in conflict with each other. In 
other words, for a given task graph, the heuristics presented 
in this study aim to generate a schedule that minimizes 
both the makespan and energy consumption; however, the 
reduction in energy consumption is often made by lower-
ing supply voltage and this results in an increase in 
makespan. The incorporation of energy consumption into 
task scheduling adds another layer of complexity to an al-
ready intricate problem.  

Unlike real-time systems, applications in our study are 
not deadline-constrained; this indicates that evaluation of 
the quality of schedules is not straightforward, rather the 
quality of schedules should be measured explicitly consid-
ering both makespan and energy consumption. For this 
reason, each of our algorithms (ECS and ECSmakespan) is 
devised with relative superiority (RS) as a novel objective 
function, which takes into account these two performance 
considerations. While ECS accounts for energy consump-
tion and makespan equally, ECSmakespan considers makespan 
as a preferred performance metric. The latter design prefer-
ence can be explained such that recent and upcoming proc-
essors tend to be operated with lower power; and this trend 
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is anticipated to be continuing. For example, a schedule 
(for a particular task graph) with lower makespan may con-
sume less energy compared with another schedule with 
longer makespan, if the difference between the maximum 
VSL and the minimum VSL is small. While RS values for 
a task ni on a processor pj with a VSL vj,k in ECS and 
ECSmakespan are defined as 
where E(ni, pj, vj,k) and E(ni, p′, v′) are the energy con-

sumption of ni on pj with vj,k and that of ni on p′ with v′, 
respectively, and similarly the earliest start/finish times of 
the two task-processor allocations are denoted as EST(ni, pj, 
vj,k) and EST(ni, p′, v′), and EFT(ni, pj, vj,k) and EFT(ni, p′, v′). 
 

4.2 Energy-conscious scheduling heuristics 
 

Our algorithms (ECS and ECSmakespan) can be described 
as multi-pass (two-pass) algorithms—the main scheduling 
pass and the makespan-conservative energy reduction pass. 
The main scheduling pass plays as an initial schedule gen-
erator using the RS objective function; and schedules gen-
erated are further refined primarily based on their energy 
consumption. Both of our algorithms perform their sched-
uling nearly the same way with an exception being their 
RS objective function. Thus, we describe the common pro-
cedure involved in both algorithms in this sub section and 
in Figure 2. 

For a given ready task, its RS value on each processor is 
computed using the current best combination of processor 
and VSL (p′ and v′) for that task, and then the processor—
from which the maximum RS value is obtained—is se-
lected (Steps 3-15). 

Since each scheduling decision that ECS makes tends to 
be confined to a local optimum, another energy reduction 
technique (MCER) is incorporated with the energy reduc-
tion phase of ECS without sacrificing time complexity 
(Steps 17-31). It is an effective technique in lowering en-
ergy consumption, although the technique may not help 
schedules escape from local optima. MCER is makespan 
conservative in that changes it makes (to the schedule gen-

erated in the scheduling phase) are only validated if they 
do not increase the makespan of the schedule. For each 
task in a DAG, MCER considers all of the other combina-
tions of task, host and VSL to check whether any of these 
combinations reduces the energy consumption of the task 
without increasing the current makespan. 

The workings of ECS and an example of its scheduling 
are presented in Figures 2 and 4, respectively. 

 

, ,
,

, , ,

( , , ) ( , ', ') ( , , ) ( , ', ')
( , , , , ')

( , , ) ( , , ) min( ( , , ), ( , ', '))
i j j k i i j j k i

i j j k
i j j k i j j k i j j k i

E n p v E n p v EFT n p v EFT n p v
RS n p v p v

E n p v EFT n p v EST n p v EST n p v

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
′ = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

      (5)

 

      (6)

 

 
Fig. 2. The ECS algorithm 
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5. Performance evaluation 
 
In this section, we discuss the qualitative implications of 

schedules that ECS and ECSmakespan generate. The discus-
sion is led with an illustration of their scheduling of ECS 
(Figures 4 and 5).  

We first present two schedules (Figure 3) generated by 
HEFT and DBUS for the task graph in Figure 1 to show 
our algorithms’ capability of energy reduction. For fair 
comparisons a slack reclamation technique is used for 
HEFT and DBUS (Figure 3), although they originally do 
not incorporate DVFS or any other energy saving tech-

niques into their scheduling.  
The schedules in Figure 4 and 5 are generated with an α 

of 1 and the first three sets of voltage-relative speed pairs 
in Table 1 (i.e., pairs 1, 2 and 3). The schedules in Figures 
4a and 5a are intermediate schedules generated by ECS and 
ECSmakespan before the MCER technique is applied; these 
schedules are already superior to those in Figure 3 in terms 
of both makespan and energy consumption (Table 4). This 
high quality of schedule is achieved using RS. Although 
the scheduling of ECS and ECSmakespan based on RS is very 
effective and efficient, it is observed that there are often 
cases in which schedules can be improved even more, par-
ticularly in terms of energy consumption. MCER plays a 
crucial role in this respect primarily exploiting idling time 
slots identified in the schedule generated in the main 
scheduling phase. As shown in Figures 4b and 5b, MCER 
further improves the energy savings of the schedule using 
DVFS. Both ECS and ECSmakespan made three changes to 
VSLs of tasks 1, 4 and 5 in the initial schedule exploiting 
two slacks identified between tasks 4 and 6, and tasks 5 
and 7. However, due to the difference in their RS metrics, 
schedules vary to a certain degree. Those schedules in Fig-
ures 4 and 5 are well reflected difference design focuses of 
our algorithms. Specifically, the schedule ECS generated is 
the best in terms of energy consumption (236.98), whereas 
that ECSmakespan generated is the most compelling in terms 
of makespan (74). 

The time complexity of both ECS and ECSmakespan is in 
the order of O(nlogn+2((e+n)pv)), which still remains at a 
reasonably low level. 
 

           (a)                    (b) 
  
Fig. 3. Schedules of task graph in Figure 1 with slack rec-

lamation. (a) HEFT (makespan=89). (b) DBUS
(makespan=73) 

 

            (a)                  (b) 
  
Fig. 4. Schedules of task graph in Figure 1. (a) ECS with-

out MCER (makespan=77). (b) ECS with MCER
(makespan=77) 

            (a)                     (b) 
 
Fig. 5. Schedules of task graph in Figure 1. (a) ECSmakespan

without MCER (makespan=74). (b) ECSmakespan

with MCER (makespan=74) 



182                           On Effective Slack Reclamation in Task Scheduling for Energy Reduction 

Table 4. Energy consumption of schedules generated by different algorithms 
 

HEFT DBUS ECS-MCER ECS+MCER ECSmakespan-MCER ECSmakespan+MCER    algo 
task time energy time energy time energy time energy time energy time energy 

11 29.25 
13 33.69 n0 9 43.56 
9 43.56 

11 33.69 11 33.69 11 33.69 11 33.69

n1 15 33.75 11 53.24 10 30.63 13 25.48 10 30.63 13 25.48
n2 14 40.00 40 27.56 11 21.56 11 21.56 11 21.56 11 21.56
n3 12 36.75 17 38.25 15 29.40 15 29.40 12 36.75 12 36.75
n4 19 91.96 19 91.96 11 24.75 16 23.04 10 24.75 11 23.52
n5 5 16.90 10 20.25 5 24.20 6 21.66 5 24.20 6 21.66
n6 11 33.69 13 62.92 15 33.75 15 33.75 15 33.75 15 33.75
n7 10 48.40 10 48.40 10 48.40 10 48.40 10 48.40 10 48.40

total  345.01  449.08 246.38 236.98 253.73  244.81

6. Experiments and results 
 
A large number of experiments were conducted using 

our simulator developed using C/C++. Our evaluation 
study was primarily carried out based on comparisons be-
tween ECS and ECSmakespan, and two existing heuristics 
(HEFT and DBUS). The latter two algorithms were modi-
fied with the incorporation of a slack reclamation technique 
in order for fair comparisons. The slack reclamation tech-
nique adopted essentially attempts to identify that any VSL 
changes (i.e., lowering VSLs) are possible without an in-
crease in makespan. 
 

6.1 Experimental settings 
 

To ensure experiments being at a reasonable level in 
terms of practicality and reality, we have carefully config-
ured simulations with a diverse set of simulation parame-
ters (Table 5) and with two extensive sets of task graphs: 
randomly generated, and real-world application. The three 
real-world parallel applications used for our experiments 
were the Laplace equation solver [25], the LU-
decomposition [26] and Fast Fourier Transformation [27]. 
A large number of variations were made on these task 

graphs for more comprehensive experiments. 
The total number of experiments conducted with differ-

ent task graphs on the six different numbers of processors 
is 288,000 (i.e., 72,000 for each algorithm). Specifically, 
the random task graph set consisted of 150 base task 
graphs generated with combinations of 10 graph sizes, five 
CCRs and three processor heterogeneity settings. For each 
combination, 20 task graphs were randomly generated, 
retaining the characteristics of the base task graph. These 
3,000 graphs were investigated with six different numbers 
of processors. Each of the three applications were investi-
gated using the same number of task graphs (i.e., 18,000); 
hence the figure 72,000. 
The computational and communication costs of the tasks 

in each task graph were randomly selected from a uniform 
distribution, with the mean equal to the chosen average 
computation and communication costs. A processor het-
erogeneity value of 100 was defined to be the percentage of 
the speed difference between the fastest processor and the 
slowest processor in a given system. For the real-world 
application task graphs, the matrix sizes and the number of 
input points were varied, so that the number of tasks can 
range from about 10 to 600. 
 

6.2 Comparison metrics 
 

Typically, the makespan of a task graph generated by a 
scheduling algorithm is used as the main performance 
measure; however, in this study, we consider energy con-
sumption as another equally important performance meas-
ure. For a given task graph, we normalize both its 
makespan and energy consumption to lower bounds—the 
makespan and energy consumption of the tasks along the 

Table 5. Experimental parameters 
 

Parameter Value 
The number of tasks U(10, 600) 

CCR {0.1, 0.2, 1.0, 5.0, 10.0} 
The number of processors {2, 4, 8, 16, 32, 64} 
Processor heterogeneity {100, 200, random} 
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Table 6. Comparative results 
 

HEFT over  
ECS 

DBUS over  
ECS 

HEFT over 
ECSmakespan 

DBUS over 
ECSmakespan 

Algorithm 
 

DAG set makespan energy makespan energy makespan energy makespan energy 

Random 2% 6% 5% 38% 3% 6% 6% 35% 
FFT < 1% 6% 16% 39% 1% 5% 17% 39% 
Laplace 1% 7% 22% 43% 2% 7% 21% 39% 
LU -3% 8% 2% 21% 1% 6% 4% 20% 
Average 0% 7% 11% 35% 2% 6% 12% 33% 

 

     
Fig. 6. Average SLR and ECR for random DAGs 

CP (i.e., CP tasks) without considering communication 
costs. Specifically, the ‘schedule length ratio’ (SLR) and 
‘energy consumption ratio’ (ECR) were used as the pri-
mary performance metrics for our comparison. Formally, 
the SLR and ECR values of the makespan M and energy 
consumption E of a schedule generated for a task graph G 
by a scheduling algorithm are defined as 

 

SLR = 

∑
=

∈∈
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1
, }{min
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 (7) 

 
where CP is a set of CP tasks of G. 
 

6.3 Results 
 

As we try to balance two conflicting objectives 
(makespan and energy consumption), our experimental 
results in this section are presented based on these two ob-
jectives using SLR and ECR. The performance of HEFT 
and DBUS in terms of energy consumption is noticeably 
improved compared to that of their original design; this can 
be identified by results reported in [14]. However, overall 

their performance is still not comparable to the perform-
ance of our algorithms. 

The overall comparative results between our algorithms 
and the two previous algorithms are presented in Table 6 
followed by the results for each different DAG set (Figures 
6 and 7). Table 6 clearly signifies the superior performance 
of our algorithms over HEFT and DBUS, irrespective of 
different DAG types. In addition, ECS and ECSmakespan out-
performed these two previous algorithms consistently with 
various different CCRs as shown in Figures 6 and 7. Note 
that makespans of schedules generated by HEFT and 
DBUS using a slack reclamation technique are the same as 
those generated by their original counterparts since the 
slack reclamation technique only exploits slack times iden-
tified in schedules generated by original HEFT and DBUS. 

Once again, HEFT and DBUS are well known heuristics 
with their scheduling quality (i.e., makespan); however, 
their makespan-centric design fails (or is at least incompe-
tent) to account for the energy consumption of schedules 
they generate. Particularly, in the case of DBUS excessive 
energy consumption nearly prohibits its use in the current 
computing environment. HEFT has been proven to perform 
very competitively with a low time complexity, and it has 
been frequently adopted and extended; this implies that the 
average SLR of ECS and ECSmakespan with even a one per-
cent margin (Table 6) is compelling. Note that ECSmakespan 
has improved the quality of schedules over its original 
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counterpart (ECS) in terms of makespan. 
The source of the main performance gain of our algo-

rithms is the use of the RS objective function, which con-
tributes to reducing both makespan and energy consump-
tion. In our experiments, on average a further 3.2 percent 
and 2.9 percent improvement in energy consumption—for 
schedules after the main scheduling phase of ECS and 
ECSmakespan—was made by the MCER technique. 
 
 

7. Conclusion 
 
As energy consumption is increasingly getting attention 

in DCSs due to their operational and environment implica-

tions, resource management practices (particularly schedul-
ing practices) in these systems is revisited and revised to 
improve energy efficiency. In this paper we have presented 
an energy-conscious scheduling algorithm as an extension 
of our previous work. Unlike most existing scheduling al-
gorithms regardless of the incorporation of energy con-
sumption in their scheduling, our algorithms explicitly take 
into account both makespan and energy consumption. 
Since these two performance metrics (makespan and en-
ergy consumption) are closely correlated, the RS objective 
function devised as part of our study plays a key role in 
balancing these two performance objectives. This claim 
and the superior performance of our algorithms are con-
firmed with results presented in this paper. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 7. Average SLR and ECR for real-world application DAGs. (a) FFT. (b) Laplace. (c) LU 
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