
 Journal of Information Processing Systems, Vol.5, No.4, December 2009 175

ISSN 1738-8899 ⓒ 2005 KIPS

On Effective Slack Reclamation in Task Scheduling
for Energy Reduction

Young Choon Lee* and Albert Y. Zomaya*

Abstract: Power consumed by modern computer systems, particularly servers in data centers has al-
most reached an unacceptable level. However, their energy consumption is often not justifiable when
their utilization is considered; that is, they tend to consume more energy than needed for their comput-
ing related jobs. Task scheduling in distributed computing systems (DCSs) can play a crucial role in
increasing utilization; this will lead to the reduction in energy consumption. In this paper, we address
the problem of scheduling precedence-constrained parallel applications in DCSs, and present two en-
ergy-conscious scheduling algorithms. Our scheduling algorithms adopt dynamic voltage and fre-
quency scaling (DVFS) to minimize energy consumption. DVFS, as an efficient power management
technology, has been increasingly integrated into many recent commodity processors. DVFS enables
these processors to operate with different voltage supply levels at the expense of sacrificing clock fre-
quencies. In the context of scheduling, this multiple voltage facility implies that there is a trade-off be-
tween the quality of schedules and energy consumption. Our algorithms effectively balance these two
performance goals using a novel objective function and its variant, which take into account both goals;
this claim is verified by the results obtained from our extensive comparative evaluation study.

Keywords: Scheduling, Energy Awareness, Green Computing, Dynamic Voltage and Frequency Scaling,
Data Centers

1. Introduction

Until recently energy issues have been mostly dealt with

by advancements in hardware technologies [1], such as
low-power CPUs, solid state drives, and energy-efficient
computer monitors. Energy-aware resource management
has emerged as a promising approach for sustainable/green
computing. Although many algorithms and strategies have
been developed, their application is quite restricted for ex-
ample, to systems such as battery-powered devices, homo-
geneous computing systems [2-5] or single-processor sys-
tems [6]. In addition to system homogeneity, tasks are of-
ten homogeneous or independent.

The energy consumption issue in distributed computing
systems (DCSs) raises various monetary, environmental
and system performance concerns. A recent study on
power consumption by servers [7] shows that electricity
use for servers worldwide—including their associated
cooling and auxiliary equipment—in 2005 cost 7.2 billion
US dollars. The study also indicates that electricity con-
sumption in that year had doubled compared with con-
sumption in 2000. Clearly, there are environmental issues

with the generation of electricity. The number of transistors
integrated into today’s Intel Itanium 2 processor reaches
nearly 1 billion. If this rate continues, the heat (per square
centimeter) produced by future Intel processors would ex-
ceed that of the surface of the sun [8]; this implies the pos-
sibility of worsening system reliability, eventually resulting
in poor system performance.

Due to the importance of energy consumption, various
techniques including dynamic voltage and frequency scal-
ing (DVFS), resource hibernation, and memory optimiza-
tions have been investigated and developed [1]. DVFS
among these has been proven to be a very promising tech-
nique with its demonstrated capability for energy savings
(e.g., [3,4,9]). For this reason, we adopt this technique and
it is of particular interest to this study. DVFS enables proc-
essors to dynamically adjust voltage supply levels (VSLs)
aiming to reduce power consumption; however, this reduc-
tion is achieved at the expense of clock frequencies.

Since precedence-constrained parallel applications in
scientific and engineering fields are the most typical appli-
cation model, the problem of scheduling these applications
(task scheduling) both on homogeneous and heterogeneous
computing systems has been studied extensively over the
past few decades, e.g., [10-13]. However, most efforts in
task scheduling have focused on two issues, the minimiza-
tion of application completion time (makespan/schedule
length) and time complexity; in other words, the main ob-

DOI : 10.3745/JIPS.2009.5.4.175

Copyright ⓒ 2009 KIPS (ISSN 1976-913X)

Manuscript received November 19, 2009; accepted December 3, 2009.
Corresponding Author: Albert Y. Zomaya
* Centre for Distributed and High Performance Computing, School of

Information Technologies, University of Sydney, Australia (yclee, zo-
maya@it.usyd.edu.au)

Invited Paper

176 On Effective Slack Reclamation in Task Scheduling for Energy Reduction

jective of a task scheduling algorithm is the generation of
the optimal schedule for a given application with the
minimal amount of scheduling time. It is only recently that
much attention has been paid to energy consumption in
scheduling, particularly on DCSs.

In this paper, we address the task scheduling problem on
DCSs comprised of heterogeneous processors and present
the ECS algorithm with its extension (ECSmakespan). A prior
work of ECS can be found in [14]. While the extended ver-
sion still takes into account both makespan and energy
consumption, its focus is more on the reduction in
makespan; hence, the name ECSmakespan. This design focus
may lead to better energy efficiency as low-power proces-
sors are becoming more prevalent. The heuristics can eas-
ily be applied to loosely coupled DCSs (e.g., grids) using
advance reservation and various sets of frequency-voltage
pairs. ECS and ECSmakespan are devised with the incorpora-
tion of DVFS to reduce energy consumption; this implies
that there is a trade-off between the quality of schedules
(makespans) and energy consumption. A novel objective
function used in the main scheduling phase of each of our
algorithms effectively deals with this trade-off balancing
these two performance considerations. In addition, the en-
ergy reduction phase using the makespan-conservative
energy reduction technique (MCER) is incorporated into
ECS and ECSmakespan. In this phase, the current schedule
generated in the scheduling phase is scrutinized to identify
whether any changes to the schedule further reduce energy
consumption without an increase in makespan. The low
time complexity of our algorithms should also be noted.
The results obtained from our extensive comparative
evaluation study clearly show that ECS and ECSmakespan
outperform previous scheduling algorithms in terms of
energy consumption by a noticeable margin. Their sched-
ules are also shorter in makespan than those of other algo-
rithms.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the application, system, energy and sched-
uling models used in this paper. Section 3 discusses the
related work. ECS and ECSmakespan algorithms are presented
in Section 4 followed by a discussion of its performance in
Section 5. The results of our comparative evaluation study
are presented in Section 6. In Section 7, we make our con-
clusion.

2. Models

In this section, we describe the system, application, en-

ergy and scheduling models used in our study.

2.1 System model

The target system used in this work consists of a set P of

p heterogeneous processors/machines that are fully inter-
connected. Each processor pj∈P is DVFS-enabled; in other
words, it can operate in different VSLs (i.e., different clock
frequencies). For each processor pj∈P, a set Vj of v VSLs is
random and uniformly distributed among four different sets
of VSLs (Table 1); this ensures that our system model is
realistic. Since clock frequency transition overheads take a
negligible amount of time (e.g., 10µs-150µs [15], [16]),
they are not considered in our study. The inter-processor
communications are assumed to perform with the same
speed on all links without contentions. It is also assumed
that a message can be transmitted from one processor to
another while a task is being executed on the recipient
processor that is possible in many systems.

2.2 Application model

Parallel programs, in general, can be represented by a di-
rected acyclic graph (DAG). A DAG, G = (N, E), consists
of a set N of n nodes and a set E of e edges. A DAG is also
called a task graph or macro-dataflow graph. In general,
the nodes represent tasks partitioned from an application;
the edges represent precedence constraints. An edge (i, j) ∈
E between task ni and task nj also represents inter-task
communication. In other words, the output of task ni has to
be transmitted to task nj in order for task nj to start its exe-
cution. A task with no predecessors is called an entry task,
nentry, whereas an exit task, nexit, is one that does not have
any successors. Among the predecessors of a task ni, the
predecessor which completes the communication at the
latest time is called the most influential parent (MIP) of the

Table 1. Voltage-relative speed pairs

Pair 1 Pair 2 Pair 3 Pair 4

level
vk

rel.
speed
(%)

vk

rel.
speed
(%)

vk
rel.

speed
(%)

vk

rel.
speed
(%)

0 1.75 100 1.50 100 2.20 100 1.50 100
1 1.40 80 1.40 90 1.90 85 1.20 80
2 1.20 60 1.30 80 1.60 65 0.90 50
3 0.90 40 1.20 70 1.30 50
4 1.10 60 1.00 35
5 1.00 50
6 0.90 40

Young Choon Lee and Albert Y. Zomaya 177

task denoted as MIP(ni). The longest path of a task graph is
the critical path (CP).

The weight on a task ni denoted as wi represents the
computation cost of the task. In addition, the computation
cost of the task on a processor pj, is denoted as wi,j and its

average computation cost is denoted as iw .

The weight on an edge, denoted as ci,j represents the
communication cost between two tasks, ni and nj. However,
a communication cost is only required when two tasks are
assigned to different processors. In other words, the com-
munication cost when tasks are assigned to the same proc-
essor can be ignored, i.e., 0.

The earliest start time and the earliest finish time of a
task ni on a processor pj is defined as

⎩
⎨
⎧

=),(ji pnEST 0
inMIPki i

cpnMIPEFT),()),((+
if ni = nentry

Otherwise (1)

=),(ji pnEFT jiji wpnEST ,),(+ (2)

Note that the actual start and finish times of a task ni on

a processor pj, denoted as AST(ni, pj) and AFT(ni, pj) can be
different from its earliest start and finish times, EST(ni, pj)
and EFT(ni, pj), if the actual finish time of another task
scheduled on the same processor is later than EST(ni, pj).

In the case of adopting task insertion the task can be
scheduled in the idle time slot between two consecutive
tasks already assigned to the processor as long as no viola-
tion of precedence constraints is made. This insertion
scheme would contribute in particular to increasing proces-
sor utilization for a communication intensive task graph
with fine-grain tasks.

A simple task graph is shown in Fig. 1 with its details in
Tables 2 and 3. The values presented in Table 2 are com-
puted using two frequently used task prioritization methods,
t-level and b-level. The t-level of a task is defined as the

summation of the computation and communication costs
along the longest path of the node from the entry task in
the task graph. The task itself is excluded from the compu-
tation. In contrast, the b-level of a task is computed by add-
ing the computation and communication costs along the
longest path of the task from the exit task in the task graph
(including the task). The b-level is used in this study.

The communication to computation ratio (CCR) is a
measure that indicates whether a task graph is communica-
tion intensive, computation intensive or moderate. For a
given task graph, it is computed by the average communi-
cation cost divided by the average computation cost on a
target system.

2.3 Energy model

Our energy model is derived from the power consump-
tion model in complementary metal-oxide semiconductor
(CMOS) logic circuits. The power consumption of a
CMOS-based microprocessor is defined to be the summa-
tion of capacitive, short-circuit and leakage power. The
capacitive power (dynamic power dissipation) is the most
significant factor of the power consumption. The capaci-
tive power (Pc) is defined as

Pc = ACV2f (3)

where A is the number of switches per clock cycle, C is

the total capacitance load, V is the supply voltage, and f is
the frequency. Equation 3 clearly indicates that the supply
voltage is the dominant factor; therefore, its reduction

Fig. 1. A simple task graph

Table 2. Task Priorities
Task b-level t-level

0 101.33 0.00
1 66.67 22.00
2 63.33 28.00
3 73.00 25.00
4 79.33 22.00
5 41.67 56.33
6 37.33 64.00
7 12.00 89.33

Table 3. Computation cost with VSL 0

Task p0 p1 p2
0 11 13 9
1 10 15 11
2 9 12 14
3 11 16 10
4 15 11 19
5 12 9 5
6 10 14 13
7 11 15 10

178 On Effective Slack Reclamation in Task Scheduling for Energy Reduction

would be most influential to lower power consumption.
The energy consumption of the execution of a precedence-
constrained parallel application used in this study is de-
fined as

∑∑
==

=⋅=
n

i
ii

n

i
ii wVwfACVE

1

*2

1

*2 α (4)

where Vi

 is the supply voltage of the processor on which
task ni executed, and wi

* is the computation cost of task ni
(the amount of time taken for ni’s execution) on the sched-
uled processor.

2.4 Scheduling model

The task scheduling problem in this study is the process
of allocating a set N of n tasks to a set P of p processors—
without violating precedence constraints—aiming to mini-
mize makespan with energy consumption as low as possi-
ble. The makespan is defined as M=max{AFT(nexit)} after
the scheduling of n tasks in a task graph G is completed.
Although the minimization of makespan is crucial, tasks of
a DAG in our study are not associated with deadlines as in
real-time systems.

3. Related Work

In this section, we present two noteworthy works in task

scheduling, particularly for DCSs, and then scheduling
algorithms with power/energy consciousness. Since there
are only few existing algorithms comparable to our study
in terms of the explicit consideration of the energy issue in
the task scheduling problem on DCSs, we discuss the clos-
est possible algorithms—developed for homogeneous sys-
tems and/or with independent tasks.

3.1 Scheduling in HCSs

Due to the NP-hard nature of the task scheduling prob-
lem in general cases [17], heuristics are the most popularly
adopted scheduling model, and they deliver good solutions
in less than polynomial time. Heuristics are characterized
by their essentially deterministic operation: the choice of
solutions to a scheduling problem is not stochastic. Among
the different heuristic techniques, list scheduling, cluster-
ing-based scheduling and guided random search are the
three most prevalent approaches. List scheduling heuristics
are the dominant heuristic model. This is because empiri-
cally, list scheduling algorithms tend to produce competi-

tive solutions with lower time complexity compared to
algorithms in the other categories [18].
The HEFT algorithm [12] is highly competitive in that it

generates a schedule length comparable to other scheduling
algorithms, with a low time complexity. It is a list-
scheduling heuristic consisting of the two typical phases of
list scheduling (i.e., task prioritization and processor selec-
tion) with task insertion.
Before scheduling begins, the b-level values of all tasks in

a task graph are computed and arranged in a scheduling list
in decreasing order of their b-level values. Each task is
then scheduled, starting from the first task in the schedul-
ing list. In the processor selection phase, the processor, pj,
on which the finish time of a task ni, EFT(ni, pj) is mini-
mized, is selected using an insertion-based policy. In other
words, a task can be inserted into the earliest time slot be-
tween two already-scheduled tasks on a processor if the
precedence constraint of that task is not violated and the
slot is large enough to accommodate the task. The time
complexity of HEFT is on the order of O(n log n+(e+n)p).
The DBUS algorithm [19] is a duplication-based schedul-

ing heuristic that first performs a CP-based listing for tasks
and schedules them with both task duplication and inser-
tion. The experimental results in [19] show its attractive
performance, especially for communication-intensive task
graphs.
As its name implies, DBUS schedules tasks in a task

graph, traversing it in a bottom-up fashion. In the listing
phase, it first computes the b-level, t-level and st-level val-
ues of the tasks and identifies the CP tasks. The CP tasks
are stored in a list in decreasing t-level order along with the
child tasks of each of these CP tasks, such that the child
tasks of a CP task precede the CP task. These child tasks
are stored in decreasing st-level order. The only distinction
between the t- and st-levels is that communication costs are
not considered in the st-level. The order of the tasks in the
list determines the scheduling order.
In the scheduling phase, each task in the list is scheduled

and duplicated as many times as either the number of its
child tasks already scheduled or the number of proces-
sors—whichever is less. The processor to which a child
task is assigned is regarded as a processor that should be
covered. For each processor to be covered, a copy of the
task to be scheduled is assigned to a particular processor on
which its completion time is minimized, and the child task
on the former processor can then start as it was originally
scheduled. This process repeats until all processors to be
covered are actually covered. It is possible that a single
task assignment can cover more than one processor. One
drawback of this duplication scheme is that there might be
a significant increase in schedule length if the number of

Young Choon Lee and Albert Y. Zomaya 179

processors is very small compared to the number of tasks;
this is because, although redundant duplications of a task
might be effective for the task itself, its replicas can cause a
‘cascade effect’, in which the replicas invoke too many
subsequent duplications. The time complexity of DBUS is
in the order of O(n2p2).

3.2 Scheduling in HCSsaScheduling with energy con-
sciousness

Since CPUs are the major source of power consumption

in DCSs [4], many microprocessor manufacturers includ-
ing Intel, AMD, Motorolla and Transmeta have put a lot of
effort into low-power processor design focusing on DVFS
[15,20-22]. DVFS is a promising energy saving technique
that can be incorporated into scheduling; and many sched-
uling algorithms (e.g., [5,23]) using DVFS have been pro-
posed for different problems. However, the majority of
previous studies on scheduling that take into consideration
energy consumption are conducted on homogeneous com-
puting systems [2-5,23] or single-processor systems [6]. In
addition to system homogeneity, tasks are generally homo-
geneous and independent. Slack management/reclamation
is a frequently adopted technique with DVFS.
In [3], several different scheduling algorithms using the

concept of slack sharing among DVFS-enabled processors
were proposed. The target system model and the task
model are homogeneous multiprocessor systems, and het-
erogeneous independent and dependent real-time tasks
with hard deadline, respectively. The rationale behind the
algorithms is to utilize idle (slack) time slots of processors
lowering voltage supply (frequency/speed). This technique
is known as slack reclamation. These slack time slots occur,
due to earlier completion (than worst case execution time)
and/or dependencies of tasks. The scheduling algorithms
for both independent and dependent tasks in [3] adopt
global scheduling in which all tasks wait in a global queue
and are dispatched based on their priorities. The work in
[3] has been extended in [23] with AND/OR model appli-
cations. Since the target system for both works is shared-
memory multiprocessor systems, communication between
dependent tasks is not considered.
In [4], two voltage scaling algorithms for periodic, spo-

radic, and aperiodic tasks on a dynamic priority single-
processor system were proposed. They are more practical
compared with many existing DVFS algorithms in that a
priori information on incoming tasks is not assumed to be
available until the tasks are actually released.
Rountree et al. in [24] developed a system based on linear

programming (LP) that exploits slack using DVS (i.e.,
slack reclamation). Their LP system aims to deliver near-

optimal schedules that tightly bound optimal solutions. It
incorporated allowable time delays, communication slack,
and memory pressure into its scheduling. The LP system
mainly deals with energy reduction for a given pre-
generated schedule with a makespan constraint as in most
existing algorithms.

Another two scheduling algorithms for bag-of-tasks
(BoT) applications on clusters were proposed in [2]. Tasks
in a BoT application are typically independent and homo-
geneous, yet run with different input parameters/files. In
[2], deadline constraints are associated with tasks for the
purpose of quality control. The two algorithms differ in
terms of whether processors in a given computer cluster are
time-shared or space-shared. Computer clusters in this pa-
per are composed of homogeneous DVFS-enabled proces-
sors.

4. Task scheduling with energy consciousness

In this section, we begin by discussing design focuses of

our algorithms formulating an objective function for each
of our algorithms, and describe algorithmic details.

4.1 Characterization of design objectives

As in most multi-objective optimization problems, the
goal in our task scheduling problem is to find Pareto-
optimal solutions since the performance objectives of the
problem are most likely to be in conflict with each other. In
other words, for a given task graph, the heuristics presented
in this study aim to generate a schedule that minimizes
both the makespan and energy consumption; however, the
reduction in energy consumption is often made by lower-
ing supply voltage and this results in an increase in
makespan. The incorporation of energy consumption into
task scheduling adds another layer of complexity to an al-
ready intricate problem.

Unlike real-time systems, applications in our study are
not deadline-constrained; this indicates that evaluation of
the quality of schedules is not straightforward, rather the
quality of schedules should be measured explicitly consid-
ering both makespan and energy consumption. For this
reason, each of our algorithms (ECS and ECSmakespan) is
devised with relative superiority (RS) as a novel objective
function, which takes into account these two performance
considerations. While ECS accounts for energy consump-
tion and makespan equally, ECSmakespan considers makespan
as a preferred performance metric. The latter design prefer-
ence can be explained such that recent and upcoming proc-
essors tend to be operated with lower power; and this trend

180 On Effective Slack Reclamation in Task Scheduling for Energy Reduction

is anticipated to be continuing. For example, a schedule
(for a particular task graph) with lower makespan may con-
sume less energy compared with another schedule with
longer makespan, if the difference between the maximum
VSL and the minimum VSL is small. While RS values for
a task ni on a processor pj with a VSL vj,k in ECS and
ECSmakespan are defined as
where E(ni, pj, vj,k) and E(ni, p′, v′) are the energy con-

sumption of ni on pj with vj,k and that of ni on p′ with v′,
respectively, and similarly the earliest start/finish times of
the two task-processor allocations are denoted as EST(ni, pj,
vj,k) and EST(ni, p′, v′), and EFT(ni, pj, vj,k) and EFT(ni, p′, v′).

4.2 Energy-conscious scheduling heuristics

Our algorithms (ECS and ECSmakespan) can be described
as multi-pass (two-pass) algorithms—the main scheduling
pass and the makespan-conservative energy reduction pass.
The main scheduling pass plays as an initial schedule gen-
erator using the RS objective function; and schedules gen-
erated are further refined primarily based on their energy
consumption. Both of our algorithms perform their sched-
uling nearly the same way with an exception being their
RS objective function. Thus, we describe the common pro-
cedure involved in both algorithms in this sub section and
in Figure 2.

For a given ready task, its RS value on each processor is
computed using the current best combination of processor
and VSL (p′ and v′) for that task, and then the processor—
from which the maximum RS value is obtained—is se-
lected (Steps 3-15).

Since each scheduling decision that ECS makes tends to
be confined to a local optimum, another energy reduction
technique (MCER) is incorporated with the energy reduc-
tion phase of ECS without sacrificing time complexity
(Steps 17-31). It is an effective technique in lowering en-
ergy consumption, although the technique may not help
schedules escape from local optima. MCER is makespan
conservative in that changes it makes (to the schedule gen-

erated in the scheduling phase) are only validated if they
do not increase the makespan of the schedule. For each
task in a DAG, MCER considers all of the other combina-
tions of task, host and VSL to check whether any of these
combinations reduces the energy consumption of the task
without increasing the current makespan.

The workings of ECS and an example of its scheduling
are presented in Figures 2 and 4, respectively.

, ,
,

, , ,

(, ,) (, ', ') (, ,) (, ', ')
(, , , , ')

(, ,) (, ,) min((, ,), (, ', '))
i j j k i i j j k i

i j j k
i j j k i j j k i j j k i

E n p v E n p v EFT n p v EFT n p v
RS n p v p v

E n p v EFT n p v EST n p v EST n p v

⎛ ⎞⎛ ⎞ ⎛ ⎞− −
′ = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

 (5)

 (6)

Fig. 2. The ECS algorithm

Young Choon Lee and Albert Y. Zomaya 181

5. Performance evaluation

In this section, we discuss the qualitative implications of

schedules that ECS and ECSmakespan generate. The discus-
sion is led with an illustration of their scheduling of ECS
(Figures 4 and 5).

We first present two schedules (Figure 3) generated by
HEFT and DBUS for the task graph in Figure 1 to show
our algorithms’ capability of energy reduction. For fair
comparisons a slack reclamation technique is used for
HEFT and DBUS (Figure 3), although they originally do
not incorporate DVFS or any other energy saving tech-

niques into their scheduling.
The schedules in Figure 4 and 5 are generated with an α

of 1 and the first three sets of voltage-relative speed pairs
in Table 1 (i.e., pairs 1, 2 and 3). The schedules in Figures
4a and 5a are intermediate schedules generated by ECS and
ECSmakespan before the MCER technique is applied; these
schedules are already superior to those in Figure 3 in terms
of both makespan and energy consumption (Table 4). This
high quality of schedule is achieved using RS. Although
the scheduling of ECS and ECSmakespan based on RS is very
effective and efficient, it is observed that there are often
cases in which schedules can be improved even more, par-
ticularly in terms of energy consumption. MCER plays a
crucial role in this respect primarily exploiting idling time
slots identified in the schedule generated in the main
scheduling phase. As shown in Figures 4b and 5b, MCER
further improves the energy savings of the schedule using
DVFS. Both ECS and ECSmakespan made three changes to
VSLs of tasks 1, 4 and 5 in the initial schedule exploiting
two slacks identified between tasks 4 and 6, and tasks 5
and 7. However, due to the difference in their RS metrics,
schedules vary to a certain degree. Those schedules in Fig-
ures 4 and 5 are well reflected difference design focuses of
our algorithms. Specifically, the schedule ECS generated is
the best in terms of energy consumption (236.98), whereas
that ECSmakespan generated is the most compelling in terms
of makespan (74).

The time complexity of both ECS and ECSmakespan is in
the order of O(nlogn+2((e+n)pv)), which still remains at a
reasonably low level.

 (a) (b)

Fig. 3. Schedules of task graph in Figure 1 with slack rec-

lamation. (a) HEFT (makespan=89). (b) DBUS
(makespan=73)

 (a) (b)

Fig. 4. Schedules of task graph in Figure 1. (a) ECS with-

out MCER (makespan=77). (b) ECS with MCER
(makespan=77)

 (a) (b)

Fig. 5. Schedules of task graph in Figure 1. (a) ECSmakespan

without MCER (makespan=74). (b) ECSmakespan

with MCER (makespan=74)

182 On Effective Slack Reclamation in Task Scheduling for Energy Reduction

Table 4. Energy consumption of schedules generated by different algorithms

HEFT DBUS ECS-MCER ECS+MCER ECSmakespan-MCER ECSmakespan+MCER algo
task time energy time energy time energy time energy time energy time energy

11 29.25
13 33.69 n0 9 43.56
9 43.56

11 33.69 11 33.69 11 33.69 11 33.69

n1 15 33.75 11 53.24 10 30.63 13 25.48 10 30.63 13 25.48
n2 14 40.00 40 27.56 11 21.56 11 21.56 11 21.56 11 21.56
n3 12 36.75 17 38.25 15 29.40 15 29.40 12 36.75 12 36.75
n4 19 91.96 19 91.96 11 24.75 16 23.04 10 24.75 11 23.52
n5 5 16.90 10 20.25 5 24.20 6 21.66 5 24.20 6 21.66
n6 11 33.69 13 62.92 15 33.75 15 33.75 15 33.75 15 33.75
n7 10 48.40 10 48.40 10 48.40 10 48.40 10 48.40 10 48.40

total 345.01 449.08 246.38 236.98 253.73 244.81

6. Experiments and results

A large number of experiments were conducted using

our simulator developed using C/C++. Our evaluation
study was primarily carried out based on comparisons be-
tween ECS and ECSmakespan, and two existing heuristics
(HEFT and DBUS). The latter two algorithms were modi-
fied with the incorporation of a slack reclamation technique
in order for fair comparisons. The slack reclamation tech-
nique adopted essentially attempts to identify that any VSL
changes (i.e., lowering VSLs) are possible without an in-
crease in makespan.

6.1 Experimental settings

To ensure experiments being at a reasonable level in
terms of practicality and reality, we have carefully config-
ured simulations with a diverse set of simulation parame-
ters (Table 5) and with two extensive sets of task graphs:
randomly generated, and real-world application. The three
real-world parallel applications used for our experiments
were the Laplace equation solver [25], the LU-
decomposition [26] and Fast Fourier Transformation [27].
A large number of variations were made on these task

graphs for more comprehensive experiments.
The total number of experiments conducted with differ-

ent task graphs on the six different numbers of processors
is 288,000 (i.e., 72,000 for each algorithm). Specifically,
the random task graph set consisted of 150 base task
graphs generated with combinations of 10 graph sizes, five
CCRs and three processor heterogeneity settings. For each
combination, 20 task graphs were randomly generated,
retaining the characteristics of the base task graph. These
3,000 graphs were investigated with six different numbers
of processors. Each of the three applications were investi-
gated using the same number of task graphs (i.e., 18,000);
hence the figure 72,000.
The computational and communication costs of the tasks

in each task graph were randomly selected from a uniform
distribution, with the mean equal to the chosen average
computation and communication costs. A processor het-
erogeneity value of 100 was defined to be the percentage of
the speed difference between the fastest processor and the
slowest processor in a given system. For the real-world
application task graphs, the matrix sizes and the number of
input points were varied, so that the number of tasks can
range from about 10 to 600.

6.2 Comparison metrics

Typically, the makespan of a task graph generated by a
scheduling algorithm is used as the main performance
measure; however, in this study, we consider energy con-
sumption as another equally important performance meas-
ure. For a given task graph, we normalize both its
makespan and energy consumption to lower bounds—the
makespan and energy consumption of the tasks along the

Table 5. Experimental parameters

Parameter Value
The number of tasks U(10, 600)

CCR {0.1, 0.2, 1.0, 5.0, 10.0}
The number of processors {2, 4, 8, 16, 32, 64}
Processor heterogeneity {100, 200, random}

Young Choon Lee and Albert Y. Zomaya 183

Table 6. Comparative results

HEFT over
ECS

DBUS over
ECS

HEFT over
ECSmakespan

DBUS over
ECSmakespan

Algorithm

DAG set makespan energy makespan energy makespan energy makespan energy

Random 2% 6% 5% 38% 3% 6% 6% 35%
FFT < 1% 6% 16% 39% 1% 5% 17% 39%
Laplace 1% 7% 22% 43% 2% 7% 21% 39%
LU -3% 8% 2% 21% 1% 6% 4% 20%
Average 0% 7% 11% 35% 2% 6% 12% 33%

Fig. 6. Average SLR and ECR for random DAGs

CP (i.e., CP tasks) without considering communication
costs. Specifically, the ‘schedule length ratio’ (SLR) and
‘energy consumption ratio’ (ECR) were used as the pri-
mary performance metrics for our comparison. Formally,
the SLR and ECR values of the makespan M and energy
consumption E of a schedule generated for a task graph G
by a scheduling algorithm are defined as

SLR =

∑
=

∈∈

||

1
, }{min

CP

i
jiPpCPn w

M

ji

 (6)

ECR =

∑
=

∈∈∈ ×
||

1

2
,, }{max}{min

,

CP

i
kjVvjiPpCPn vw

E

jkjji

 (7)

where CP is a set of CP tasks of G.

6.3 Results

As we try to balance two conflicting objectives
(makespan and energy consumption), our experimental
results in this section are presented based on these two ob-
jectives using SLR and ECR. The performance of HEFT
and DBUS in terms of energy consumption is noticeably
improved compared to that of their original design; this can
be identified by results reported in [14]. However, overall

their performance is still not comparable to the perform-
ance of our algorithms.

The overall comparative results between our algorithms
and the two previous algorithms are presented in Table 6
followed by the results for each different DAG set (Figures
6 and 7). Table 6 clearly signifies the superior performance
of our algorithms over HEFT and DBUS, irrespective of
different DAG types. In addition, ECS and ECSmakespan out-
performed these two previous algorithms consistently with
various different CCRs as shown in Figures 6 and 7. Note
that makespans of schedules generated by HEFT and
DBUS using a slack reclamation technique are the same as
those generated by their original counterparts since the
slack reclamation technique only exploits slack times iden-
tified in schedules generated by original HEFT and DBUS.

Once again, HEFT and DBUS are well known heuristics
with their scheduling quality (i.e., makespan); however,
their makespan-centric design fails (or is at least incompe-
tent) to account for the energy consumption of schedules
they generate. Particularly, in the case of DBUS excessive
energy consumption nearly prohibits its use in the current
computing environment. HEFT has been proven to perform
very competitively with a low time complexity, and it has
been frequently adopted and extended; this implies that the
average SLR of ECS and ECSmakespan with even a one per-
cent margin (Table 6) is compelling. Note that ECSmakespan
has improved the quality of schedules over its original

184 On Effective Slack Reclamation in Task Scheduling for Energy Reduction

counterpart (ECS) in terms of makespan.
The source of the main performance gain of our algo-

rithms is the use of the RS objective function, which con-
tributes to reducing both makespan and energy consump-
tion. In our experiments, on average a further 3.2 percent
and 2.9 percent improvement in energy consumption—for
schedules after the main scheduling phase of ECS and
ECSmakespan—was made by the MCER technique.

7. Conclusion

As energy consumption is increasingly getting attention

in DCSs due to their operational and environment implica-

tions, resource management practices (particularly schedul-
ing practices) in these systems is revisited and revised to
improve energy efficiency. In this paper we have presented
an energy-conscious scheduling algorithm as an extension
of our previous work. Unlike most existing scheduling al-
gorithms regardless of the incorporation of energy con-
sumption in their scheduling, our algorithms explicitly take
into account both makespan and energy consumption.
Since these two performance metrics (makespan and en-
ergy consumption) are closely correlated, the RS objective
function devised as part of our study plays a key role in
balancing these two performance objectives. This claim
and the superior performance of our algorithms are con-
firmed with results presented in this paper.

(a)

(b)

(c)

Fig. 7. Average SLR and ECR for real-world application DAGs. (a) FFT. (b) Laplace. (c) LU

Young Choon Lee and Albert Y. Zomaya 185

References

[1] Venkatachalam, V. and Franz, M. “Power reduction
techniques for microprocessor systems”, ACM Com-
puting Surveys, 37(3), pp.195-237, 2005.

[2] Kim, K. H. et al. “Power aware scheduling of bag-of-
tasks applications with deadline constraints on DVS-
enabled clusters”, Proc. of the 7th IEEE International
Symposium on Cluster Computing and the Grid,
pp.541-548, 2007.

[3] Zhu, D., et al. “Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in
multiprocessor real-time systems”, IEEE Trans. Par-
allel and Distributed Systems, 14(7), pp.686-700,
2003.

[4] Ge, R., et al. “Performance-constrained distributed
DVS scheduling for scientific applications on power-
aware clusters”, Proc. of the ACM/IEEE Conference
on Supercomputing, pp.34-44, 2005.

[5] Chen, J. J. and Kuo, T. W. “Multiprocessor energy-
efficient scheduling for real-time tasks with different
power characteristics”, Proc. of International Confer-
ence on Parallel Processing, pp.13-20, 2005.

[6] Zhong, X. and Xu, C.-Z. “Energy-aware modeling
and scheduling for dynamic voltage scaling with sta-
tistical real-time guarantee”, IEEE Trans. Computers,
56(3), pp.358-372, 2007.

[7] J. G. Koomey, Estimating total power consumption
by servers in the U.S. and the world.

[8] G. Koch, Discovering multi-core: extending the
benefits of Moore’s law, Technology@Intel Maga-
zine, July 2005 (http://www.intel.com/technology/
magazine/computing/multi-core-0705.pdf).

[9] D. P. Bunde, Power-aware scheduling for makespan
and flow, Proc. the eighteenth annual ACM sympo-
sium on Parallelism in algorithms and architectures,
July, 2006.

[10] S. Darbha and D. P. Agrawal, Optimal scheduling
algorithm for distributed-memory machines, IEEE
Trans. Parallel and Distributed System, Vol.9 , No.1,
1998, pp.87-95.

[11] A. Y. Zomaya, C. Ward, and B. S. Macey, Genetic
Scheduling for Parallel Processor Systems: Com-
parative Studies and Performance Issues, IEEE Trans.
Parallel Distrib. Syst., Vol.10, No.8, pp.795-812,
1999.

[12] H. Topcuouglu, S. Hariri, and M.-Y. Wu, Perform-
ance-Effective and Low-Complexity Task Schedul-
ing for Heterogeneous Computing, IEEE Trans. Par-
allel Distrib. Syst., Vol.13, No.3, pp.260-274, 2002.

[13] Y. C. Lee and A. Y. Zomaya, A Novel State Transi-
tion Method for Metaheuristic-Based Scheduling in
Heterogeneous Computing Systems, IEEE Trans.

Parallel Distrib. Syst., Vol.19, No.9, pp.1215-1223,
2008.

[14] Y. C. Lee, and A. Y. Zomaya, Minimizing Energy
Consumption for Precedence-constrained Applica-
tions Using Dynamic Voltage Scaling, Proceedings
of the International Symposium on Cluster Comput-
ing and the Grid (CCGRID), May, 18-21, pp.92-99,
2009.

[15] Intel, Intel Pentium M Processor datasheet, 2004.
[16] R. Min, T. Furrer, and A. Chandrakasan, Dynamic

Voltage Scaling Techniques for Distributed Mi-
crosensor Networks, Proc. IEEE Workshop on VLSI,
pp.43-46, April, 2000.

[17] M.R. Garey and D.S. Johnson, Computers and Intrac-
tability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Co., pp.238-239, 1979.

[18] Y. K. Kwok and I. Ahmad, Benchmarking the Task
Graph Scheduling Algorithms, Proc. First Merged
Int’l Parallel Symposium/Symposium on Parallel and
Distributed Processing (IPPS/SPDP ‘98), pp.531-
537, 1998.

[19] D. Bozdag, U. Catalyurek and F. Ozguner, A task
duplication based bottom-up scheduling algorithm
for heterogeneous environments, Proc. Int’l Parallel
and Distributed Processing Symp., April, 2005.

[20] AMD, AMD Athlon™ 64 Processor Power and
Thermal Data Sheet, 2006.

[21] C. Pyron, M. Alexander, J. Golab, G. Joos, B. Long,
R. Molyneaux, R. Raina, and N. Tendolkar, DFT ad-
vances in the Motorola's MPC7400, a PowerPCTM
microprocessor, Proc. Int’l Test Conference, pp.137-
146, 1999.

[22] D. R. Ditzel and the Transmeta LongRun2 team,
Power Reduction using LongRun2 in Transmeta's
Efficeon Processor, Spring processor forum, 2006.

[23] D. Zhu, D. Mosse, and R. Melhem, Power-aware
scheduling for AND/OR graphs in real-time systems,
IEEE trans. Parallel and distributed Systems, Vol.15,
No.9, pp.849-864, 2004.

[24] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh,
B. R. de Supinski, M. Schulz, Bounding energy con-
sumption in large-scale MPI programs, Proc. the
ACM/IEEE conference on Supercomputing, Novem-
ber, 2007.

[25] M.-Y. Wu and D.D. Gajski, Hypertool: A Program-
ming Aid for Message-Passing Systems, IEEE Trans.
Parallel and Distributed Systems, Vol.1, No.3,
pp.330-343, July, 1990.

[26] R.E. Lord, J.S. Kowalik, and S.P. Kumar, Solving
Linear Algebraic Equations on an MIMD Computer,
J. ACM, Vol.30, No.1, pp.103-117, January, 1983.

[27] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, In-
troduction to Algorithms, MIT Press, 1990.

186 On Effective Slack Reclamation in Task Scheduling for Energy Reduction

Young Choon Lee
He received the BSc (hons) in
computer science in 2003 and the Ph.D.
degree from the School of Information
Technologies at the University of
Sydney in 2008. He is currently with
the Centre for Distributed and High
Performance Computing, School of

Information Technologies. His current research interests
include scheduling strategies for heterogeneous computing
systems including clouds, nature-inspired techniques, and
parallel and distributed algorithms. He is a member of the
IEEE and the IEEE Computer Society.

Albert Y. Zomaya
He is currently the Chair Professor of
High Performance Computing and
Networking in the School of Information
Technologies, The University of Sydney.
He is also the Director for the newly
established Sydney University Centre
for Distributed and High Performance

Computing. Prior to joining Sydney University he was a
full professor in the Electrical and Electronic Engineering
Department at the University of Western Australia, where
he also led the Parallel Computing Research Laboratory
during the period 1990-2002. He is the author/co-author of

seven books, more than 350 publications in technical
journals and conferences, and the editor of eight books and
eight conference volumes. He is currently an associate
editor for 16 journals, the Founding Editor of the Wiley
Book Series on Parallel and Distributed Computing and a
Founding Co-Editor of the Wiley Book Series on
Bioinformatics. Professor Zomaya was the Chair of the
IEEE Technical Committee on Parallel Processing (1999-
2003) and currently serves on its executive committee. He
also serves on the Advisory Board of the IEEE Technical
Committee on Scalable Computing and IEEE Systems,
Man, and Cybernetics Society Technical Committee on
Self-Organization and Cybernetics for Informatics, and is a
Scientific Council Member of the Institute for Computer
Sciences, Social-Informatics, and Telecommunications
Engineering (in Brussels). He received the 1997
Edgeworth David Medal from the Royal Society of New
South Wales for outstanding contributions to Australian
Science. Professor Zomaya is also the recipient of the
Meritorious Service Award (in 2000) and the Golden Core
Recognition (in 2006), both from the IEEE Computer
Society. He is a Chartered Engineer (CEng), a Fellow of
the American Association for the Advancement of Science,
the IEEE, the Institution of Electrical Engineers (UK), and
a Distinguished Engineer of the ACM. His research
interests are in the areas of high performance computing,
parallel algorithms, mobile computing, and bioinformatics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

