• Title/Summary/Keyword: power added efficiency (PAE)

Search Result 110, Processing Time 0.031 seconds

High gain and High Efficiency Power Amplifier Using Controlling Gate and Drain Bias Circuit for WPT (무선전력전송용 게이트 및 드레인 조절 회로를 이용한 고이득 고효율 전력증폭기)

  • Lee, Sungje;Seo, Chulhun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.52-56
    • /
    • 2014
  • In this paper, a high-efficiency power amplifier is implemented using a gate and drain bias control circuit for WPT (Wireless Power Transmission). This control circuit has been employed to improve the PAE (Power Added Efficiency). The gate and drain bias control circuits consists of a directional coupler, power detector, and operation amplifier. A high gain two-stage amplifier using a drive amplifier is used for the low input stage of the power amplifier. The proposed power amplifier that uses a gate and drain bias control circuit can have high efficiency at a low and high power level. The PAE has been improved up to 80.5%.

Realization of High Linear and Efficiency Power Amplifier Using Optimum Load Without Hybrid Coupler (Hybrid Coupler 제거와 부하 최적화를 이용한 고효율 및 고선형성 전력 증폭기의 관한 연구)

  • An, Se-Hwan;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.88-93
    • /
    • 2006
  • In this paper, smaller load has been used compared with the conventional Doherty amplifier and PBG structure have been employed to suppress IMD (Inter-modulation Distortion) and improve PAE (Power Added Efficiency). And The PBG structure has been employed on the output macthing network of Doherty amplifier. The proposed power amplifier has been improved more the IMD3 by 5.5 dBc, and the average PAE by $5\%,$ at peak output power, $18\%$ at 8dB back-off point respectively than the conventional Doherty power amplifier.

Research on the Improvement of PAE and Linearity using Dual Bias Control and PBG Structure in Doherty Amplifier (포락선 검파를 통한 이중 바이어스 조절과 PBG를 이용한 도허티 증폭기 전력효율과 선형성 개선)

  • Kim, Hyoung-Jun;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.76-80
    • /
    • 2007
  • In this paper, the PAE (Power Added Efficiency) and the linearity of the Doherty amplifier has been improved using dual bias control and PBG (Photonic BandGap) structure. The PBG structure has used to implement on output matching circuit and dual bias control has applied to improve the PAE of the Doherty amplifier at a low input level by applying it to a carrier amplifier. The Doherty amplifier using the proposed structure has improved PAE by 8% and 5dBc of IMD3 (3rd Inter-Modulation Distortion) compared with those of the conventional class AB amplifier. In addition to, it has been evident that the designed the structure has showed more than a 30% increase in PAE for flatness over all input power level.

A Highly Efficiency CLass-F Power Amplifier Using The Spiral PBG(Photonic Bandgap) Structure (나선형 구조의 PBG(Photonic Bandgap)를 적용한 고효율 Class-F 전력 증폭기)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.49-54
    • /
    • 2008
  • In this paper, the power added efficiency(PAE) of class F power amplifier is improved by applying a new Photonic Bandgap (PBG) structure on the output of amplifier. The proposed spiral PBG structure is a two-dimensional (2-D) periodic lattice patterned on a dielectric slab that does not require nonplanar fabrication process. This structure bas higher suppression performance at second harmonic. Also, It has a sharp skirt property. This new PBG structure can be applied with class F power amplifier for efficiency improvement. We obtained the PAE of 73.62 % for CDMA applications, and the PAE performance is improved as much as 6.2 % compared with that of a conventional class F power amplifier.

Research on PAE of CMOS Class-E Power Amplifier For Multiple Antenna System (다중 안테나 시스템을 위한 CMOS Class-E 전력증폭기의 효율 개선에 관한 연구)

  • Kim, Hyoung-Jun;Joo, Jin-Hee;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, bias control circuit structure have been employed to improve the power added efficiency of the CMOS class-E power amplifier on low input power level. The gate and drain bias voltage has been controlled with the envelope of the input RF signal. The proposed CMOS class-E power amplifier using bias controlled circuit has been improved the PAE on low output power level. The operating frequency is 2.14GHz and the output power is 22dBm to 25dBm. In addition to, it has been evident that the designed the structure has showed more than a 80% increase in PAE for flatness over all input power level, respectively.

Research on PAE of Doherty Amplifier with Low-pass Filter of Wide Stopband (광대역 특성의 LPF를 이용한 도허티 증폭기의 전력 효율 향상에 관한 연구)

  • Jung, Du-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.107-111
    • /
    • 2009
  • In this paper, the power added efficiency(PAE) of a Doherty amplifier has been improved by applying Photonic Bandgap(PBG) characteristics on the output of amplifier. As a result of the high order harmonics termination, excellent improvement in PAE, maximum output power as well as linearity is obtained. The PAE is improved as much as relatively 35% compared with a conventional Doherty amplifier. Moreover, size of LPF is reduced by PBG characteristics. Therefore the whole amplifier circuit size is considerably reduced by diminishing in size of the LPF as compared with a Doherty amplifier using conventional LPFs.

Research of PAE and linearity of Power amplifier Using EER and Metamaterial (EER 및 메타구조를 이용한 전력증폭기의 선형성 및 효율 개선)

  • Jung, Du-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.80-85
    • /
    • 2010
  • In this paper, the efficiency of power amplifier has been maximized by the application of EER structure, and the linearity has been improved by using metamaterial structure. This paper has proposed a design of power amplifier in class-F to get the PAE, and to control dynamic power using envelope detector. CRLH structure gets high-linearity by removing harmonics arisen from the mismatching of matching circuit. The PAE and the 3rd order IMD have been improved 5.93 %, 12.83 dB compared with those of conventional Class-F amplifier, respectively.

Research on PAE and Linearity of Power Amplifier Using EER and PBG Structure (EER 및 PBG를 이용한 전력 증폭기의 효율 및 선형성 개선에 관한 연구)

  • Lee, Chong-Min;Seo, Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.584-590
    • /
    • 2007
  • In this paper, the efficiency of power amplifier has been maximized by the application of EER structure, and the linearity has been improved by using PBG structure. This paper has proposed a design of power amplifier in class-F to get the PAE, and to control dynamic power using envelope detector. PBG structure gets high-linearity by removing harmonics arisen from the mismatching of matching circuit. The PAE and the 3rd order IMD have been improved 34.64%, 6.65 dB compared with those of conventional Doherty amplifier, respectively.

Research on PAE and Linearity of Doherty Amplifier Using Adaptive Bias and PBG Structure (적응형 바이어스와 PBG를 이용한 Doherty 전력 증폭기 전력효율과 선형성 개선에 관한 연구)

  • Lee Wang-Yeol;Seo Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.8 s.99
    • /
    • pp.777-782
    • /
    • 2005
  • In this paper, adaptive bias circuit and PBG structure have been employed to suppress IMD(Inter-Modulation Distortion) and improve PAE(Power Added Efficiency) of the Doherty amplifier. Gate bias voltage has been controlled with the envelope of the input RF signal and PBG structure has been employed on the output port of Doherty amplifier. The proposed power amplifier using adaptive bias circuit and PBG has been improved the $IMD_3$ by 7.5 dBc, and the average PAR by $12\%$, respectively.

Research on PAE of Doherty Amplifier Using Dual Bias Control and PBG Structure (이중 바이어스 조절과 PBG를 이용한 도허티 증폭기 전력 효율 개선에 관한 연구)

  • Kim Hyoung-Jun;Seo Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.707-712
    • /
    • 2006
  • In this paper, dual bias control circuit and PBG(Photonic BandGap) structure have been employed to improve PAE(Power Added Effciency) of the Doherty amplifier on Input power level. The gate and drain bias voltage has been controlled with the envelope of the input RF signal and PBG structure has been employed on the output port of Doherty amplifier. The proposed Doherty amplifier using dual bias controlled circuit and PBG has been improved the average PAE by 8%, $IMD_3$ by -5 dBc. And proposed Doherty amplifier has a high efficiency more than 30% on overall input power level, respectively.