• Title/Summary/Keyword: power absorption

Search Result 849, Processing Time 0.025 seconds

Numerical Analysis on Wave Energy Absorption of OWC-type Wave Power Generation (진동수주형 파력발전기의 에너지 흡수효율 해석)

  • Kyoung, Jo-Hyun;Hong, Sa-Young;Hong, Do-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.64-69
    • /
    • 2006
  • A numerical analysis is made to investigate the wave absorption efficiency of a OWC-type wave power generator. Energy absorption by an OWC(Oscillating Water Column) air-chamber is computed in regular waves, taking account of the oscillating surface-pressure, due to pressure drop, across the duct of the air chamber. The problem is formulated in the scope of potential theory and solved by the Localized Finite Element Method(LFEM), based on the classical variational principle. The efficiency of energy absorption is investigated by. changing wave conditions, sea-bottom slope and pressure drop coefficient.

A Study on the Diagnosis for Water Absorption of Generator Stator Windings (발전기 고정자 권선의 흡습 진단)

  • Bae Y.C.;Kim H.S.;Lee D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.297-298
    • /
    • 2006
  • Water leak for the water-cooled generator stator windings affects seriously the availability and the reliability of power plants. Generally, water absorption test is conducted in the power plant during outage in order to confirm if leak part is in the bars or not. In this paper, it is described that the capacitance of winding bars is measured by using the developed water absorption instrument system and the water absorption of winding bars is evaluated by using the stochastic methods. The good results by proposed diagnosis technique can be got. It is expected that the reliability of diagnosis for water absorption is increased if the proposed methods are applied to evaluate the water absorption of stator winding bars.

  • PDF

A Study on the Water Absorption Test of Generator Stator Windings Using Probability Distributions (여러 가지 확률분포를 이용한 발전기 고정자 권선의 흡습 시험에 관한 연구)

  • Kim, Hee-Soo;Bae, Y.C.;Kim, Hee-Jeong;Na, Myung-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.961-969
    • /
    • 2009
  • Water absorption in water-cooled generator stator windings can cause serious accidents such as insulation breakdown and it brings a generator to the unexpected sudden outage. Accordingly, it is important to diagnose the water absorption of them in the effective operation of power plant. Especially, the capacitance value which is measured for diagnosis is very small so the special diagnosis methods like stochastic theory are needed. KEPRI developed the water absorption test equipment and diagnosis technology for them. In this paper we propose that water absorption test of generator stator windings using probability distributions. The proposed diagnosis technology is applied to the real system and the results of water absorption test for stator windings are agreed to them of water leak test.

Dual-Coupled Inductor High Gain DC/DC Converter with Ripple Absorption Circuit

  • Yang, Jie;Yu, Dongsheng;Alkahtani, Mohammed;Yuan, Ligen;Zhou, Zhi;Zhu, Hong;Chiemeka, Maxwell
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1366-1379
    • /
    • 2019
  • High-gain DC/DC converters have become one of the key technologies for the grid-connected operation of new energy power generation, and its research provides a significant impetus for the rapid development of new energy power generation. Inspired by the transformer effect and the ripple-suppressed ability of a coupled inductor, a double-coupled inductor high gain DC/DC converter with a ripple absorption circuit is proposed in this paper. By integrating the diode-capacitor voltage multiplying unit into the quadratic Boost converter and assembling the independent inductor into the magnetic core of structure coupled inductors, the adjustable range of the voltage gain can be effectively extended and the limit on duty ratio can be avoided. In addition, the volume of the magnetic element can be reduced. Very small ripples of input current can be obtained by the ripple absorption circuit, which is composed of an auxiliary inductor and a capacitor. The leakage inductance loss can be recovered to the load in a switching period, and the switching-off voltage spikes caused by leakage inductance can be suppressed by absorption in the diode-capacitor voltage multiplying unit. On the basis of the theoretical analysis, the feasibility of the proposed converter is verified by test results obtained by simulations and an experimental prototype.

Analytical Application of Glow Discharge Atomic Absorption Spectroscopy (GD-AAS) Using Three Types of Jet Configurations Under Power Mode

  • Hwang, Jun Ho;Lee, Ki Beom;Kim, Min Su;Lee, Seong Ro;Kim, Hasuck;Kim, Hyo Jin;Lee, Gae Ho
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.443-448
    • /
    • 1995
  • Three anode configurations of six-jet, cone-jet and cylindrical-jet are tested for their analytical performance under power mode operation. The effect of pressure, power and gas flow rate on atomic absorption signals have been studied. The increase of atomic absorption signal of sample element is observed at a fixed pressure in all configurations as the gas flow rate increase up to 300-600 seem, and as the power dissipated in the glow discharge cell increase. The lower the pressure is in the glow discharge cell at a fixed discharge power and argon flow rate, the greater the absorbance of sample element is. The optimum conditions are taken from these data and a calibration curve of Cu in low-alloy steel sample is obtained. In this calibration curve, six-jet configuration shows the best analytical results varies as the sample element.

  • PDF

A study on the improvement of sound absorption coefficient of an honeycomb panel by the core resonance (코어공명을 이용한 허니콤패널의 흡음율 개선에 관한 연구)

  • Yu, Y.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.46-51
    • /
    • 2008
  • Honeycomb panel has a constructive advantage because it is constructed with a honeycomb core, so it has relatively higher strength ratio to weight. Therefore honeycomb panel has been used as the light weight panels in the high-speed railway technology and high-speed ship like as cruise yachts. Also it has been used in the aircraft and aerospace industry as a structural panel because light weight structure is indispensible in that field of industry. Recently, the honeycomb panel is embossed in the viewpoints of high oil prices as the lightweight panel of the transport machine, however the sound insulation capacity of the honeycomb panel is poorer than those of uniform and another sandwich panels. In this paper a method to improving the sound absorption coefficient of a honeycomb panel Is studied by using the Helmholtz resonator. The sound absorption coefficients for some kinds of honeycomb cores are demonstrated by the normal incident absorption coefficient method.

  • PDF

Solar Absorption Cooling System applicable to Educational Facilities (교육시설에 적용 가능한 태양열 흡수식 냉각 시스템)

  • Youn, Sung-Min;Paek, In-Su;Han, Young-Tae;Nam, Hyo-Gab
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2011
  • Performance of a small-capacity solar absorption cooling system was investigated experimentally. Ten sets of evacuative-tube solar-heat collectors and a 5 kW single-stage absorption cooler were combined to produce a hybrid cooling system. The performance of the cooling system was measured using a tim-coil unit installed in a small plastic storage. It was found from the test on a sunny day of May that when the temperature of the hot water supplied from the solar collectors to the generator of the absorption cooler reached $60^{\circ}C$, the absorption cooler started cooling and the cold water temperature measured from the fan-coil unit reached $18^{\circ}C$. The COP, which is defined as the ratio of the cooling power to the total electrical power input was higher than 1.0.

  • PDF

Study on Reliability of Water Absorption Diagnosis through Precise Water Absorption Test

  • Kim, Hee-Soo;Bae, Yong-Chae;Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.772-777
    • /
    • 2012
  • Accidents caused by water absorption in water-cooled generator stator windings often occur all over the world. The absorption into the insulator of the coolant, which is used to cool down the heat generated by stator windings during operation, leads to the deterioration of dielectric strength, and insulation breakdown. An insulation breakdown may cause not only an enormous economic loss but also a very serious grid accident that would compromise stable supply of electric power. More than 50 % of domestic generators have been in operation for more than 15 years, and water absorption tests performed on 50 water-cooled generator stator windings during a five-year planned preventive maintenance period beginning in 2006 identified water absorption problems in 10 of them, all of which required repair. Because the existing water absorption test detects this problem by utilizing stochastic methods after measuring the capacitances at the final positions of insulation breakdown, its accuracy is limited. This study demonstrates that water absorption can be more accurately diagnosed by utilizing method along with a more precise one.

Effect of Annealing Temperature on the Electromagnetic Wave Absorbing Properties of Nanocrystalline Soft-magnetic Alloy Powder (연자성 나노결정합금 분말의 열처리 온도에 의한 전자파 흡수 특성의 영향)

  • Hong, S.H.;Sohn, K.Y.;Park, W.W.;Moon, B.G.;Song, Y.S.
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy powder. With increasing the annealing temperature the complex permeability (${\mu}_r$), permittivity (${\varepsilon}_r$) and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at $610^{\circ}C$ for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.