• Title/Summary/Keyword: powdery mildews

Search Result 24, Processing Time 0.033 seconds

Control of Powdery Mildews of Cucumber by Using Mayonnaise (마요네즈 살포에 의한 오이흰가루병 방제)

  • Kim, Jin-Kyoung;Shim, Chang-Ki;Park, Sang-Won;Park, Byung-Jun;Jee, Hyeong-Jin;Kim, Won-Il;Kwon, Oh-Kyung;Im, Geon-Jae
    • Korean Journal of Organic Agriculture
    • /
    • v.17 no.4
    • /
    • pp.557-566
    • /
    • 2009
  • This study was conducted to develop an organic control of powdery mildews of cucumber by using mayonnaise in green house. The treatment of 0.1~2% mayonnaise resulted in 8.3%~99.2% control efficiencies against powdery mildew of cucumber. 0.5% mayonnaise treatment resulted control values over 97% in disease. It did not adversely affected the photosynthesis of foliages. Although one application of mayonnaise to the foliage was not practically effective enough, two or three application of mayonnaise to the foliage at the 0.5% concentration resulted in excellent control against powdery mildews. This treatment could provide protection for 10~14 days after application. Among the type of mayonnaise, general mayonnaise revealed 97.5% control value, but mayonnaise containing low oil content revealed 39.3%~97.5% control values on powdery mildews at the 0.5% concentration. Therefore, oil content in mayonnaise played a essential material to control powdery mildew. Results indicated that mayonnaise could be used as organic control of powdery mildews of cucumber. This control might be environmentfriendly as well as cost-effective.

  • PDF

Lasiodiplodia theobromae is a Mycoparasite of a Powdery Mildew Pathogen

  • Kumar, P. Sreerama;Singh, Leena
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.308-309
    • /
    • 2009
  • Powdery mildews on over 40 plants in Bangalore were screened during July-December of 2003~2008. Isolates from mycoparasitised Oidium caesalpiniacearum of Bauhinia purpurea comprised Lasiodiplodia theobromae, in addition to Ampelomyces quisqualis. Koch's postulates were satisfied to establish the mycoparasitism of L. theobromae. This is the first report that L. theobromae acts as a mycoparasite of a powdery mildew.

The Identity of Eggplant Powdery Mildews Collected in Korea (한국에서 채집된 가지 흰가루병균의 실체)

  • Cho, Sung-Eun;Choi, In-Young;Shin, Hyeon-Dong
    • The Korean Journal of Mycology
    • /
    • v.45 no.2
    • /
    • pp.91-101
    • /
    • 2017
  • Three species of powdery mildew (Erysiphales) on eggplant (Solanum melongena L.) have been listed in Korea, namely Erysiphe cichoracearum (now genus Golovinomyces), Leveillula taurica, and Sphaerotheca fusca (now genus Podosphaera; syn. Podosphaera xanthii). Since E. cichoracearum was recorded on eggplant for the first time in Korea in 1969, it has been regarded as a major powdery mildew agent on that plant. In 1998, the causal agent of powdery mildew on eggplant was recorded as L. taurica, then as S. fusca in 2002. During our extensive field surveys in Korea, we collected 22 samples of eggplant powdery mildews. Our microscopic observations and molecular sequence analyses showed that all of our samples belonged to the genus Podosphaera, in the absence of either E. cichoracearum or L. taurica, suggesting that P. xanthii is the dominant agent of powdery mildew disease on eggplants in Korea. As there have been no additional findings on L. taurica after the first report on the species, it seems to be a minor species that is rarely found in greenhouses. The presence of E. cichoracearum (syn. Golovinomyces cichoracearum s. lat.) on eggplants is questionable, as the morphological characteristics of E. cichoracearum in the original description of the Korean collection deviate from the morphological variations of this species. In addition, no herbarium material of E. cichoracearum remains. Consequently, it seems that P. xanthii is the main species of powdery mildew on eggplants, whereas L. taurica occurs rarely on eggplants, in Korea. This review provides the historical and recent taxonomy of eggplant powdery mildews in detail.

Antifungal Activities of Bacillus thuringiensis Isolates on Barley and Cucumber Powdery Mildews

  • Choi, Gyung-Ja;Kim, Jin-Cheol;Jang, Kyoung-Soo;Lee, Dong-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2071-2075
    • /
    • 2007
  • Fourteen Bacillus thuringiensis isolates having both insecticidal activity and in vitro antifungal activity were selected and tested for in vivo antifungal activity against tomato late blight, wheat leaf rust, tomato gray mold, and barley powdery mildew in growth chambers. All the isolates represented more than 70% disease control efficacy against at least one of four plant diseases. Specifically, 12 isolates exhibited strong control activity against barley powdery mildew. Under glasshouse conditions, four (50-02, 52-08, 52-16, and 52-18) of the isolates also displayed potent control efficacy against cucumber powdery mildew. To our knowledge, this is the first report of B. thuringiensis isolates that have disease control efficacy against powdery mildew of barley and cucumber as well as insecticidal activity.

Control of Powdery and Downy Mildews of Cucumber by Using Cooking Oils and Yolk Mixture

  • Jee, Hyeong-Jin;Shim, Chang-Ki;Ryu, Kyung-Yul;Park, Jong-Ho;Lee, Byung-Mo;Choi, Du-Hoe;Ryu, Gab-Hee
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.280-285
    • /
    • 2009
  • Powdery and downy mildews caused by Sphaerotheca fusca and Pseudoperonospora cubensis are the most common and serious diseases of cucumber worldwide. In spite of the introduction of highly effective systemic fungicides, control of these diseases remains elusive. Hence, this study aimed to develop an alternative method to chemicals in controlling the diseases by using different types of cooking oil. Egg yolk, which contains a natural emulsifier, lecithin, was selected as a surfactant to emulsify the oils. Among the different cooking oils used, soybean, canola (rape seed), safflower, sunflower, olive, and corn oils showed over 95% control values against powdery mildew of cucumber in a greenhouse test. In particular, 0.3% canola oil emulsified with 0.08% yolk (1 yolk and 60 ml canola in 20 l spray) was found to be the most effective. The treatment resulted in 98.9% and 96.3% control efficacies on powdery and downy mildews, respectively, of cucumber in the field. Canola oil exhibited direct and systemic effect, wherein powdery mildew of cucumber was suppressed only on treated leaves but not on non-treated leaves in a plant, while mycelia and conidia of the pathogen were severely distorted or destroyed by the treatment. The prospect of using the canola oil and yolk mixture as a natural fungicide is highly promising because of its effectiveness, availability, low cost, simple preparation, and safety to humans and the environment. The use of the canola oil and yolk mixture is expected to be an effective fungicide for use in organic farming and home gardening.

Control Effect of Major Fungal Diseases of Cucumber by Mixing of Biofungicides Registered for Control of Powdery Mildew with Other Control Agents (오이 흰가루병 방제용 미생물농약의 혼용에 의한 오이 주요 곰팡이병의 방제 효과)

  • Kim, Gyoung-Hee;Park, Jae- Young;Cha, Ju-Hoon;Jeon, Chi-Sung;Hong, Sung-Joon;Kim, Young-Ho;Hur, Jae-Seoun;Koh, Young-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.323-328
    • /
    • 2011
  • Control efficacies of mixing of powdery mildew biofungicides with other control agents against major or fungal diseases of cucumber were investigated. Control efficacies against cucumber powdery mildew were quite different according to the kinds of biofungicides applied but those of powdery mildew biofungicides were increased by mixing application of two biofungicides. More than 80% of control efficacies on powdery and downy mildews of cucumber were obtained by mixing application of a powdery mildew biofungicide Bacillus subtilis KB-401 and a downy mildew chemical fungicide dimethomorph. Similarly, control efficacies on powdery and downy mildews of cucumber were 95% and 70% by mixing application of a powdery mildew biofungicide Bacillus subtilis KB-401 and cooking oils and yolk mixture, respectively.

New Records of Powdery Mildews from Ornamental Trees in Korea (I) (관상수목의 미기록 흰가루병(I))

  • Shin, Hyeon-Dong;Yang, Sung-Il;Lee, Sang-Hyun
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.158-163
    • /
    • 1999
  • Powdery mildew diseases previously unrecorded in Korea were noticed on four species of ornamental trees. Field observations on each disease were described and the causal fungi were identified. Powdery mildew of Symplocos chinensis for. pilosa was found to occur mildly, especially on plants growing in shade. The causal fungus was identified as Microsphaera nomurae U. Braun. Cornus florida was found to be infected with Microsphaera pulchra Cooke & Peck and supposed to be epidemic in nursery. Powdery mildew of Malus baccata occurred on young leaves and herbaceous stems in nursery. The causal fungus was classified as Podosphaera leucotricha (Ellis & Everh.) Salmon. Powdery mildew of Ulmus macrocarpa was found to occur in autumn and severe on young shoots. Uncinula kenjiana Homma was identified as the causal fungus.

  • PDF

Multi-Tasking U-net Based Paprika Disease Diagnosis (Multi-Tasking U-net 기반 파프리카 병해충 진단)

  • Kim, Seo Jeong;Kim, Hyong Suk
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • In this study, a neural network method performing both Detection and Classification of diseases and insects in paprika is proposed with Multi-Tasking U-net. Paprika on farms does not have a wide variety of diseases in this study, only two classes such as powdery mildew and mite, which occur relatively frequently are made as the targets. Aiming to this, a U-net is used as a backbone network, and the last layers of the encoder and the decoder of the U-net are utilized for classification and segmentation, respectively. As the result, the encoder of the U-net is shared for both of detection and classification. The training data are composed of 680 normal leaves, 450 mite-damaged leaves, and 370 powdery mildews. The test data are 130 normal leaves, 100 mite-damaged leaves, and 90 powdery mildews. Its test results shows 89% of recognition accuracy.

Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin

  • Lamsal, Kabir;Kim, Sang-Woo;Jung, Jin-Hee;Kim, Yun-Seok;Kim, Kyoung-Su;Lee, Youn-Su
    • Mycobiology
    • /
    • v.39 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Powdery mildew is one of the most devastating diseases in cucurbits. Crop yield can decline as the disease severity increases. In this study, we evaluated the effect of silver nanoparticles against powdery mildew under different cultivation conditions in vitro and in vivo. Silver nanoparticles (WA-CV-WA13B) at various concentrations were applied before and after disease outbreak in plants to determine antifungal activities. In the field tests, the application of 100 ppm silver nanoparticles showed the highest inhibition rate for both before and after the outbreak of disease on cucumbers and pumpkins. Also, the application of 100 ppm silver nanoparticles showed maximum inhibition for the growth of fungal hyphae and conidial germination in in vivo tests. Scanning electron microscope results indicated that the silver nanoparticles caused detrimental effects on both mycelial growth and conidial germination.

Effect of the Mixture of Two Plant Alkaloids Isolated from Corydalis longipes Against Balsam Powdery Mildew on Detached Leaves and Pea Powdery Mildew in Field

  • Gohain, Leena;Maurya, S.;Pandey, M.B.;Pandey, V.B.;Singh, U.P.
    • Mycobiology
    • /
    • v.32 no.4
    • /
    • pp.155-159
    • /
    • 2004
  • N-Methylhydrasteine hydroxylactam and 1-methoxyberberine chloride, both alkaloids, extracted from Corydalis longipes have been assayed for their activities against two powdery mildews. The spore germination of Erysiphe cichoracearum on detached leaf of balsam(Impatiens balsaminia) following pre- and post-inoculation treatments by their mixture has shown high efficacy against the pathogen at 100, 200 and 300 ${\mu}g/ml$. The mixture was also effective at both pre- and post-inoculation treatments at 500, 1000, 1500 ${\mu}g/ml$ doses against E. pisi causing pea powdery mildew in pea(Pisum sativum) under field conditions. The significant efficacy of the mixture of two compounds against spore germination on detached leaves of balsam and also under field conditions in pea warrants its inclusion in trials against some other diseases under field conditions.