• Title/Summary/Keyword: powder size distribution

Search Result 526, Processing Time 0.026 seconds

Carbide Grain Growth in Cemented Carbides

  • Mannesson, Karin;Agren, John
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.336-337
    • /
    • 2006
  • During sintering of cemented carbides abnormal grain growth is often observed but cannot be understood from the classical LSW-theory. A model based on 2-D nucleation of new crystalline layers and a grain-size distribution function is formulated and the equations are solved numerically. Experimental studies and computer simulations show that the initial grain size distribution has a strong effect on the grain growth behavior. For example, a fine-grained powder can grow past a coarser powder.

  • PDF

Densification of Metal Injection Molding Parts Made of Ball Milled W-20%Cu Powders (볼밀링한 W-20wt%Cu 분말로 제조된 금속사출성형 부품의 조밀화)

  • 김순욱;류성수;문인형
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.228-236
    • /
    • 2000
  • An investigation was carried out on the possibility whether the ball-milling process of low energy could successfully improve the packing density and flowability for MIM application in W-20wt%Cu system. In this study, W-20wt%Cu powder mixture was prepared by ball-milling. W powder was not fractured by low mechanical impact energy used in the present work during the critical ball-milling time, but the ductile Cu powder was easily deformed to the 3 dimensional equiaxed shape, having the particle size similar to that of W powder. The ball-milled mixture of W-20wt%Cu powder had the more homogeneous distribution of each component and the higher amount of powder loading for molding than the simple mixture of W-Cu powder with an irregular shape and a different size. Accordingly, the MIM W(1.75)-20wt%Cu powder compacts were able to be sintered to the relative density of 99% by sintering at $1400^{\circ}C$ for one hour.

  • PDF

Powder Characteristics by Change of Reacting Material in Nuclear Fuel Powder Preparation (핵연료분말 제조에서 반응물질의 변화가 분말의 특성에 미치는 영향)

  • 정경채;박진호;황성태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.631-636
    • /
    • 1996
  • The powder characteristics of UO2 via AUC prepared by precipitation from a UN with AC soiution produced from nuclear fuel powder conversion plant and that of the existing facility were compared. Mean particle size of AUC powder was decreased and agglomerates were much occured in case of using the AC solution that that of the gases but other properties such as particle size distribution and shape of particle are thought to be similarly. In compaction of UO2 powder the breaking pressur of agglomerated UO2 powder and the sintered density of final UO2 pellet from AC solution were measured 1.45$\times$108 N/m2 and 10.52 g/cc, These values could be used in nuclear fuel powder fabrication process.

  • PDF

Characteristics and Production of Tantalum Powder on the amount of Diluent By Na Reduction Method (Na환원법에 의한 희석제량에 따른 탄탈 분말 제조와 특성)

  • Yoon, Jae-Sik;Park, Hyeong-Ho;Bae, In-Sung;Kim, Byung-Il;Jung, Sung-Man
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.706-711
    • /
    • 2002
  • High-pure tantalum powder was fabricated through Na reduction process and has been produced by using $K_2$TaF$_{7}$, and KCI, KF for raw material and diluent, respectively. A raw material and diluent were charged at the hestalloy bomb by the weight rate of 1:2, 1:1, 1:0.5 and 1:0.25 each other, investigated properties of morphology, chemical composition and yield and particle size after reduced. Ta metal has been achieved by reduction of $K_2$$TaF_{7}$ 500g with 1% sodium in excess of stoichiometric amount in the charge at a reduction temperature of $850^{\circ}C$ for 3hours. According to amount of the diluent, a formation of the powder doesn't have an effect. The diluent prevented the temperature rising caused from the heat of reaction and it maintained the speed of reducing reaction. But in the mixture ratio of raw material and diluent in the 1 : 2 and 1 : 0.25, an oxide and partially not reacted K were detected. As the amount of diluent increased, the size of tantalum powder decreased. According as raw material and the mixture ratio of diluent change from 1:0.25 to 1:2, the size is decreased from 5$\mu\textrm{m}$ to 1$\mu\textrm{m}$, and a particle size distribution which is below 325 mesh in fined powder increases from 71% to 83%. In the case of average size of Tantalum powder which is the mixture ratio (1:0.5), we would get the Ta powder with grain size about 3$\mu\textrm{m}$, which come close to the average size (2~4$\mu\textrm{m}$) of tantalum powder which is used commonly in the present is Ta powder about 3$\mu\textrm{m}$.

The Rehydration Properties of Amorphous Alumina Powder in Low Water/Alumina Ratio (낮은물/알루미나 비에서 비정질 알루미나 분말의 수화특성)

  • 박병기;서정권;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1085-1093
    • /
    • 1998
  • Amorphous alumina powder prepared by the fast calcination of aluminum trihydroxide(Al(OH)3 gibbsite) for 0.5 second at 580$^{\circ}C$ was investigated rehydration propeties. Phase composition crystal size and mor-phology surface area pore volume and pore size distribution of pesudo-boehmite and bayerite crystals changed with temperature time water/alumina ratio and particle size when amorphous alumina rehydrated with water. Phase compositions were examined with XRD and DTA and crystal sized morphologies were investigaed with SEM and TEM. Also rehydration properties of amorphous alumina were in-vestigated by measuring the surface area pore volume and pore size distribution.

  • PDF

Effects of Ultrasonic Energy on Mn-Zn Ferrite Powder Behavior (초음파 에너지가 mn-Zn Ferrite 분체에 미치는 영향)

  • 이경직;이대희;이석기;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.751-755
    • /
    • 1999
  • Effect of ultrasonic-wave irradiation on the Mn-Zn ferrite powder suspension prepared by solid-state reaction and alcoholic dehydration methods was investigated. Size distribution and morphology of the powders prepared at different temperature were examined as a function of irradiation time. It was observed that the powders were reduced in size by ultrasonic energy through distinct routes.

  • PDF

$Y_BaCuO_5$ Distribution within $YBa_2Cu_3O_{7-x}$ Grains of Melt Infiltration Processed YBCO Oxides (융융체 침투법으로 제조한 YBCO 산화물에서 $YBa_2Cu_3O_{7-x}$ 결정립 내 $Y_BaCuO_5$ 입자분포)

  • 김찬중;이동만;지영아;박해웅;홍계원
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.205-211
    • /
    • 2000
  • Distribution of $Y_2BaCuO_5$ (211) Particles within $YBa_2Cu_3O_{7-x}/$ (123) grains of melt infiltration processed YBCO oxides was investigated. Processing parameters were a temperature, atmosphere (air and $O_2$) and initial 211 size. The 211 particles were distributed randomly within the 123 grains when the initial 211 size was large, while they made x-like pattern and/or butterfly-like patterns when the 211 size was small. The 211 patterns were more clearly observed in the samples prepared at higher temperatures and under $O_2$ atmosphere. The 211 distribution was explained in terms of the interfacial energy relationship among the solid, particle and melt.

  • PDF

Powder Fabrication of Nb-Ti Alloys Using Hydrogenation Process

  • Semboshi, Satoshi;Masahashi, Naoya;Konno, Toyohiko J.;Hanada, Shuji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.165-166
    • /
    • 2006
  • Nb-Ti alloys were hydrogenated to prepare fine and contamination-free powders. Cracks were introduced in the alloys when they were annealed at 1473 K and cooled in a hydrogen atmosphere. The fragments produced by hydrogen-induced cracking are brittle and the friability enhanced with the Ti content of the alloy, which is beneficial for further refinement of particle size. We also demonstrate that Nb-Ti powders with the average particle size less than 1 m can be produced by ball milling at a temperature lower than 203 K. Furthermore, hydrogen-free powders can then be obtained by annealing above the temperature corresponding to hydrogen desorption from Nb solid solution.

  • PDF

Synthesis and Characteristics of FePt Nanopowder by Chemical Vapor Condensation Process

  • Yu, Ji-Hun;Lee, Dong-Won;Kim, Byoung-Kee;Jang, Tae-Suk
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1196-1197
    • /
    • 2006
  • FePt binary-alloy nanopowder has been successfully synthesized by chemical vapor condensation process with two metal organic precursors, i.e., iron pentacarbonyl and platinum acetylacetonate. Average particle size of the powder was less than 50 nm with very narrow size distribution, revealing high dispersion capability. Characteristics of the powder could be controlled by changing process parameters such as reaction temperature, chamber pressure, as well as gas flow rate. Magnetic properties of the synthesized FePt nanopowder were investigated and analyzed in terms of the powder characteristics.

  • PDF