• Title/Summary/Keyword: powder size distribution

Search Result 526, Processing Time 0.026 seconds

Microstructure and Biocompatibility of Porous BCP(HA/β-TCP) Biomaterials Consolidated by SPS Using Space Holder

  • Woo, Kee-Do;Kwak, Seung-Mi;Lee, Tack;Oh, Seong-Tak;Woo, Jeong-Nam
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.449-453
    • /
    • 2016
  • $HA(hydroxyapatite)/{\beta}-TCP$ (tricalcium phosphate) biomaterial (BCP; biphasic calcium phosphate) is widely used as bone cement or scaffolds material due to its superior biocompatibility. Furthermore, $NH_4HCO_3$ as a space holder (SH) has been used to evaluate feasibility assessment of porous structured BCP as bone scaffolds. In this study, using a spark plasma sintering (SPS) process at 393K and 1373K under 20MPa load, porous $HA/{\beta}-TCP$ biomaterials were successfully fabricated using $HA/{\beta}-TCP$ powders with 10~30 wt% SH, TiH2 as a foaming agent, and MgO powder as a binder. The effect of SH content on the pore size and distribution of the BCP biomaterial was observed by scanning electron microscopy (SEM) and a microfocus X-ray computer tomography system (SMX-225CT). The microstructure observations revealed that the volume fraction of the pores increased with increasing SH content and that rough pores were successfully fabricated by adding SH. Accordingly, the cell viabilities of BCP biomaterials were improved with increasing SH content. And, good biological properties were shown after assessment using Hanks balanced salt solution (HBSS).

Evaluation of Mechanical Properties and Microstructural Behavior of Sintered WC-7.5wt%Co and WC-12wt%Co Cemented Carbides

  • Raihanuzzaman, Rumman Md.;Song, Jun-U;Tak, Byeong-Jin;Hong, Hyeon-Seon;Hong, Sun-Jik
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.58.1-58.1
    • /
    • 2011
  • WC-Co and other similar cemented carbides have been widely used as hard materials in industrial cutting tools and as mould metals; and a number of techniques have been applied to improve its microstructural characteristics, hardness and ear resistance. Cobalt is used primarily to facilitate liquid phase sintering and acts as a matrix, i.e. a cementing phase between WC grains. A uniform distribution of metal phase in a ceramic is beneficial for improved mechanical properties of the composite. WC-Co, starting from initial powders, is vastly used for a variety of machining, cutting, drilling, and other applications because of its unique combination of high strength, high hardness, high toughness, and moderate modulus of elasticity, especially with fine grained WC and finely distributed cobalt. In this study, that started with two different compositions of initial powders, WC-7.5wt%Co and WC-12wt%Co with initial powder size being 1~3 ${\mu}m$, magnetic pulsed compaction followed by subsequent vacuum sintering were carried out to produce consolidated preforms. Magnetic Pulsed Compaction (MPC), a very short duration (~600 ${\mu}s$), high pressure (~4 Gpa), high-density preform molding method was used with varied pressure between 0.5 and 3.0 Gpa, in order to reach an initial high density that would help improve the sintering behavior. For both compositions and varied MPC pressure, before and after sintering, changes in microstructural behavior and mechanical properties were analyzed. With proper combination of MPC pressure and sintering, samples were obtained with better mechanical properties, densification and microstructural behavior, and considerably improved than other conventional processes.

  • PDF

Preparation and Sound Insulation Properties of Thermoplastic Elastomer Composites with CaCO3 Filler (탄산칼슘 분말을 충진시킨 열가소성 탄성체 복합재의 제조 및 차음 특성)

  • Choi, Jung-Woo;Hwang, Yeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.467-471
    • /
    • 2010
  • Composites of ceramic powders and an elastomer-based matrix were prepared by mixing $CaCO_3$ powders with polyethylene and polypropylene elastomers, and their mechanical and sound insulation properties were measured. $CaCO_3$ powders with 0.7 ${\mu}m$ and 35 ${\mu}m$ particle size were added to elastomers up to 80 wt%. Scanning electron microscopy photographs showed uniform distribution of the $CaCO_3$ powders in the matrix. While density and surface hardness increased, melt index, tensile strength and elongation of the composites decreased as the amount of added $CaCO_3$ powders increased. As more $CaCO_3$ powders were added sound transmission loss of the composites increased owing to the increase of density. Addition of 0.7 ${\mu}m$ sized $CaCO_3$ powders resulted in a slightly higher transmission loss than the addition of 35 ${\mu}m$ sized powders because of the increased interface area between the elastomer matrix and the $CaCO_3$ powders. Composites with a polyethylene matrix showed higher transmission loss than those with a polypropylene matrix because the tensile strength and hardness of the polyethylene-based composites were low and their elongation was high.

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-Precipitation Method(II) Effects of $Al_2O3$$Cr_2O_3$Addition on Mechanical Properties and Microstructures of Y-TZP (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(II) : Y-TZP의 기계적 성질 및 미세구조에 미치는 $Al_2O3$$Cr_2O_3$의 첨가영향)

  • 이홍림;최동근;홍기곤;신현곤
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.465-472
    • /
    • 1990
  • The effects of Al2O3 and Cr2O3 addition on the mechanical properties and microstructures of Y-TZP ceramics obtained by co-precipitation method of ZrO2+3m/o Y2O3, following pressureless sintering at 150$0^{\circ}C$ for 2h were investigated. The addition of Al2O3 and Cr2O3 improved the Y-TZP sinterability and the Al2O3 addition showed the better effect on Y-TZP sintering than that of the Cr2O3 addition. The density and microstructure had the better effect on the bending strength of specimen more than stressinduced phase transformation (SIPT) of ZrO2 from tetragonal to monoclinic phase. The hardness of the specimens was found to be depend on the relative density and the fracture toughness of Y-TZP was found to rely on the amount of SIPT. The grian size of Cr2O3-doped Y-TZP was observed to be relatively smaller and had a narrower distribution than that of Al2O3-doped Y-TZP. If decomposition reaction of Cr2O3 can be controlled at high temperatures, it is anticipated that the mechanical properties of Y-TZP can be much improved by the Cr2O3 addition.

  • PDF

Antitumor Activities of Spray-dried Powders with Different Molecular Masses Fractionated from the Crude Protein-bound Polysaccharide Extract of Agaricus blazei Murill

  • Hong, Joo-Heon;Kim, Seok-Joong;Ravindra, Pogaku;Youn, Kwang-Sup
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.600-604
    • /
    • 2007
  • In this study, we first prepared 3 kinds of powders with different molecular masses from the crude protein-bound polysaccharide extract of Agraricus blazei Murill through ultrafiltration, followed by spray-drying. Then, the antitumor activities of the powders were analyzed. Size exclusion chromatography coupled with a multi-angle laser-light-scattering system showed the 3 powders had the following molecular ranges: below 10 kDa (SD-1), 10 to 150 kDa (SD-2), and above 150 kDa (SD-3), representing peak molecular weights of $8.26{\times}10^3,\;9.65{\times}10^4$, and $5.94{\times}10^6\;g/mol$, respectively. All the powders stimulated macrophage RAW264.7 cells to produce nitric oxide, of which SD-2 and SD-3 were superior to the crude extract powder (CP-SD), while SD-1 showed the lowest activity. Similar results were found for their cytotoxicities against human cancer cell lines (A549, MCF-7, and AGS), where the highest activity was obtained with the SD-2 treatment for 72 hr at $1,000\;{\mu}g/mL$. The MCF-7 cell line was less sensitive to the powders than the other cells. From this research we found that ultrafiltration, in combination with spray-drying, is applicable for preparing protein-bound polysaccharide powders with higher antitumor activities.

Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Poo Reum;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.78-85
    • /
    • 2015
  • Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of $700^{\circ}C-1000^{\circ}C$ for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.

Synthesis of Nano-sized NiCuZn-ferrites for Chip Inductor and Properties with Calcination Temperature (칩인덕터용 NiCuZn-ferrites 나노 분말합성 및 하소 온도에 따른 특성 변화)

  • 허은광;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • In this study, nano-sized NiCuZn-ferrites for the multi-layered chip inductor application were prepared by a coprecipitation method and its electromagnetic properties were analyzed. Also, the property of low temperature sintering were studied with the initial heat treatment of powder.$(Ni_{0.4-x}Cu_xZn_{0.60})_{1+w}(Fe_2O_4)_{1-w}$ (x=0.2, w=0.03) were calcined at $300^{circ}C~750^{circ}C.$ The sintered NiCuZn-ferrites at $900^{\circ}C$ showed good apparent density $4.90g/cm^3,$ and magnetic properties of initial permeability 164 and quality factor 72. As the calcination temperature increase, the grain size of NiCuZn-ferrite increased with irregular grain distribution and its magnetic properties were deteriorated.

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.