• Title/Summary/Keyword: powder particle size and shape

Search Result 199, Processing Time 0.034 seconds

Effect of SiC Particle Size on the Microstructure and Mechanical Properties Of Al2O3-SiC Composite (Al2O3-SiC 복합재료의 미세조직 및 기계적 물성에 미치는 SiC 원료분말의 크기 영향)

  • 채기웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • The effect of SiC particle size on the microstructures and mechanical properties of A1$_2$O$_3$-SiC composite was investigated. Two types of SiC powders having average particle sizes of 0.15 ${\mu}{\textrm}{m}$ and 3 ${\mu}{\textrm}{m}$ were used. The grain growth in the specimen containing 0.15 ${\mu}{\textrm}{m}$ SiC was effectively inhibited due to the fine SiC particles. However, after the formation of some abnormal grains, fast and exaggerated grain growth occurred which led to the microstructure of large grains with irregular shape. Fracture strength decreased due to the abnormal large grains. On the other hand, for specimen containing 3 ${\mu}{\textrm}{m}$ SiC showed normal grain growth behavior from initial sintering stage. Large SiC particles, however, effectively inhibited exaggerated grain growth after nucleation of a few abnormal grains. As a consequence, microstructure consisted of homogeneous elongated grains. In the A1$_2$O$_3$-2.5SiC(0.15 ${\mu}{\textrm}{m}$)-2.5SIC(3 ${\mu}{\textrm}{m}$) composite fabricated by mixing the two types of SiC powder, abnormal grain growth occurred. However, the good fracture strength was maintained regardless of microstructural changes in this specimen.

A Study on the Manufacturing of Energetically-Modified Reject Fly Ash and the Characteristics of Mortar

  • Jeong, Jae Hyun;Chu, Yong Sik;Yi, Chong Ku;Seo, Sung Kwan;Kwon, Duk Young
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.234-240
    • /
    • 2016
  • Energetically-modified material using reject fly ash (RFA), generated from thermal power plants, was manufactured to investigate the effect of the material on the physical and chemical characteristics of cement mortar. In order to modify reject fly ash, a vibration mill was used. Particle size, grain shape, and crystal structure of the ash were analyzed. Then, the compressive strength of the mortar using energetically-modified reject fly ash (ERFA) was measured. Microstructure and X-ray diffraction (XRD) patterns were also used in the analysis. As the replacement rate of ERFA increased, the value of the compressive strength tended to decrease. However, it was found that the compressive strength values of 7 and 28 days-cured specimens were higher than those of conventional ordinary Portland cement (OPC) mortar with 10 % replacement rate condition.

Morphology of Lead Titanate Prepared by Wet Chemical Methods (습식화학법으로 제조된 티탄산 납의 형상)

  • 최병철;이문호
    • Korean Journal of Crystallography
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1992
  • The morphology of lead titanate powders prepared by sol-gel and coprecipitation techniques was investigated as a function of firing temperature and soaking time. PbTiO3 precursor powders were derived from a mixed solution of lead nitrate and titanium tetrachloride at 40℃ to 43℃ and pH of 9.0 to 9.7, and fired at temperatures 350-1000℃ for 1-10h in air. An increase of particle size and agglomeration with increasing calcination temperature and duration could be observed. By annealing sol-gel derived powder at 700℃, the tially-formed acicular(and/or prismatic) primary particles transformed to polyhedral shape with soaking time, and further soaking caused coarsening the polyhedral particles with rounded edges. However, the morphology of the coprecipitated powders was not varied during crystallization.

  • PDF

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

The Production of Protein-loaded Poly(lactide-co-glycolide) Microparticles using Supercritical Carbon Dioxide (초임계 PGSS 법을 이용한 Poly(lactide-co-glycolide)와 단백질의 마이크로복합체 제조에 관한 연구)

  • Song, Eun-Seok;Jung, Heon-Seop;Lee, Hanho;Kim, Jae-Duck;Kim, Hwayong;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • A PGSS (Particles from Gas Saturated Solutions) process designed to generate nano-particles using supercritical fluids has been conducted for the fabrication of Poly(lactide-co-glycolide) (PLGA) microparticles that encapsulate a protein drug. It is demonstrated that the polymer and the dry powder of a protein can be mixed under supercritical carbon dioxide conditions and that the protein component retains its biological activity. In this experiment, the mixture of polymer which is plasticized and dry powder protein was sprayed to form solid polymer that encapsulate the protein. It is found that supercritical fluid process give fine tuning of particle size and particle size distribution by simple manipulations of the process parameters. Porous particles were formed with irregular shape. Protein encapsulated in the polymer was found to have enzymatic activity without significant loss of its initial value.

  • PDF

Synthesis of Sub-Micron MgH2 using Hydriding Thermal Chemical Vapor Synthesis (수소화기상증착공정을 이용한 마그네슘하이드라이드 미세분말 합성)

  • Kang, Taehee;Kim, Jinho;Han, Kyusung;Kim, Byunggoan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • This work describes the hydriding chemical vapor synthesis (HCVS) of the $MgH_2$ in a hydrogen atmosphere and the product's hydriding-dehydridng properties. Mg powder was used as a starting material to synthesize $MgH_2$ and uniformly heated to a temperature of $600^{\circ}C$ for Mg vaporization. The effects of hydrogen pressure on the morphology and the composition of HCVS-$MgH_2$ were examined by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clearly seen that after the HCVS process, the particle size of synthesized $MgH_2$ was drastically reduced to the submicron or micrometer-scale and these showed different shapes (needle-like nanofibers and angulated plate) depending on the hydrogen pressure. It was found that after the HCVS process, the $H_2$ desorption temperature of HCVS-$MgH_2$ decreased from 380 to $410^{\circ}C$, and the minimum hydrogen desorption tempreature of HCVS-$MgH_2$ powder with needle-like shape can be obtained. In addition, the enhanced hydrogen storage performance for needle-like $MgH_2$ was achieved during subsequent hydriding-dehydriding cycles.

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet (네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조)

  • Ha, Yonghwang;Gang, Ryun-Ji;Choi, Seung-Hoon;Yoon, Ho-Sung;Ahn, Jong-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6187-6195
    • /
    • 2012
  • Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

Property of Silica and Fine Structure of Cosmetic White Powders (화장품에 사용되는 백색분체의 미세구조와 실리카의 특성)

  • Jeon, Myung-Ok;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.42 no.2
    • /
    • pp.87-93
    • /
    • 2012
  • In this study, fine structures of silica, titanium dioxide, talc and kaolin used in decorative cosmetics and the mixture extracted from BB cream cosmetics were observed by scanning electron microscopy. Kaolin had plate like shape structures of polygon with smooth surface and edge of kaolin had a relatively smooth appearance in comparison with talc. Also, thickness of each layer was estimated to about $0.1{\mu}M$ in the lump formed in stratum of several layers. Talc was observed by lumps shape phase of layering very thin flake. Boundary of thin flake was sharp or angular phase and thickness of flake was approximately 600 nm in diameter. When comparing the thickness of kaolin and talc, we was confirmed that kaolin was thicker than talc. Diameter of titanium dioxide was estimated to 0.2~0.3 ${\mu}M$ and surface of particle was a soft cubic form. Silica was confirmed that variety of size from 200 nm to $15{\mu}M$ of globular shape was measured. From the observation of inorganic pigments, silica was homogeneous dispersed in the BB cream cosmetics and among each other was filled with relatively small size like talc, kaolin, titanium dioxide and iron oxide. In conclusion, we suggest that silica at decorative cosmetics were formed in cosmetic coat at the skin as the minimum thickness.

Fabrication of YAG : Er3+ powders for the single crystal growth according to the synthetic temperature and flux concentration (다양한 온도조건과 flux 첨가량에 따른 단결정 성장용 YAG : Er3+ 분말 제조)

  • Park, Cheol Woo;Kang, Suk Hyun;Park, Jae Hwa;Kim, Hyun Mi;Choi, Jae Sang;Kang, Hyo Sang;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.166-171
    • /
    • 2015
  • In this study, using solid-state and flux, $Y_3Al_5O_{12}:Er^{3+}\;(YAG:Er^{3+})$ powders were successfully synthesized at low temperatures. To analyze the crystallinity of powders according to the synthesis or non-synthesis of powders and powder calcination temperatures, X-ray diffraction (XRD) was measured. In the case of pure YAG, when YAG was analyzed using the general solid-phase method, it was calcined for 12 hours at $1400^{\circ}C$ and pure YAG phase could be obtained. But when $BaF_2$ was added to YAG, YAG was synthesized at lower temperature (1000^{\circ}C$). It was thus found that the synthesis temperature could be lowered by about $400^{\circ}C$. Also, when BaF2 with an optimal concentration was added to $YAG:Er^{3+}$, the particle shape and size according to synthesis temperatures were surveyed, and corresponding luminous intensity was discussed.

Microparticulation/Air Classification of Rice Bran: Characteristics and Application (초미세분쇄/공기분급을 이용한 탈지미강 분획의 특성과 응용)

  • Park, Dong-June;Ku, Kyung-Hyung;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.769-774
    • /
    • 1993
  • Defatted rice bran was microparticulated using fluidized bed opposed jet mill and air-classified at different air classifying wheel speed (ACWS) in Turboplex classifier. The median particle size and the standard deviation decreased, and concomitantly the specific surface area increased generally with increasing ACWS. The protein, fat and ash contents of the recovered rice bran increased with ACWS. The contents of minerals; magnesium, zinc, iron and manganese; increased positively with ACWS. The phytic acid content, however, was slightly higher at middle ACWS. The dietary fiber content was highest in the ACWS 15,000 rpm fraction showing 31.47%. Higher ACWS resulted in lighter colored powder. The water holding capacity (WHC) showed the maximum value at ACWS 12,000 rpm and decreased with increasing ACWS, while the oil holding capacity (OHC) increased with ACWS. The rheological property of the microparticulated rice bran/water suspension fitted to the linear model. The yield stress and viscosity of the suspension increased with ACWS. The shape of microparticulated rice bran at ACWS 21,000 rpm was spherical, and the median particle size was $3.7{\mu}m$. When cake was prepared with substitution of microparticulated rice bran at 5%, the cake height and volume increased remarkably.

  • PDF