• Title/Summary/Keyword: powder metal

Search Result 1,487, Processing Time 0.022 seconds

Preparation of Ultrafine Mullite Powder from Metal Alkoxides (금속 알콕사이드로부터 Mullite 초미분체의 제조)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.719-724
    • /
    • 2006
  • Ultrafine mullite powder was prepared from aluminium-secbutoxide and tetraethyl orthosilicate(TEOS) in the molar $Al_2O_3/SiO_2$=3/2. Sol-gel method by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. X-ray diffraction, infrared spectroscopy and transmission electron microscopy, etc. confirmed that the mullite powder prepared by this method is in the stoichiometric $Al_2O_3/SiO_2$ ratio. Al-Si spinel was formed at $980^{\circ}C$ and ultrafine mullite powder with about 20 nm particle size was obtained above $1,200^{\circ}C$. Also mullite powders calcined at $1,600^{\circ}C$ had a stoichiometric composition, $3Al_2O_3{\cdot}2SiO_2$ and the lattice constants of the mullite powders calcined above $1,200^{\circ}C$ were almost coincided with theoretical values.

Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies (냉간금형용 합금공구강 분말 및 적층조형체의 미세조직)

  • Kang, Jun-Yun;Yun, Jaecheol;Kim, Hoyoung;Kim, Byunghwan;Choe, Jungho;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

A Study on the Manufacture of Composite W Powder for Low Sintering Temperature by Liquid Reduction Precipitation Method (액상환원침전법에 의한 저온활성화소결용 복합W분말의 제조방법 및 소결특성에 관한 연구)

  • 김창욱;이철;정인;윤성렬
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.207-218
    • /
    • 1995
  • Tungsten(W) metal has excellent properties in heat-resistance, corrison-resistance and impact-resistance but W-Metal is hard to sinter because higher than $2,000^{\circ}C$ is required to sinter W-powder. Con-sequently, a deposit technique of Nikel Phosphorus(NiP) on W-powber by the liquid reduction precipitation method was performed. Sintering temperature of the resulting W-NiP composite was lowered around to $1,000^{\circ}C$, and the mechanical properties of the sintered body was studied. The most suitable conditions for NiP thin film deposit on W-Powder by the liquid reduction precipitation method, which are composition, concentration, pH and temperature of the liquid reduction solution, were considered. The activated sintering was carried out in a reducing condition furnace. Components and properties of the sintered body were investigated by the density and the hardness measurements, X- ray diffraction analysis, and microscopic photographs of the surface. Quantity of NiP thin film on W-powder could be varied by the change of the liquid reduction solution composition. The sintering temperature of W-NiP composite powder is lowered to $950^{\circ}C$ from $2,000^{\circ}C$ and the hardness is increased (ca. 720 Hv). Large shrinkage could be observed since density was increased from 5.5 to 11.0 g/$cm^2$ which 86.2% of theoretical density. W metal and $Ni_3P$ crystal were detected through X-ray diffraction on the sintered body. Perfectly activated sintering was observed by microscopic photographs.

  • PDF

Direct Preparation of Fine Nickel Powder by Slurry Reduction Method for MLCC (슬러리환원법에 의한 MLCC용 미세 니켈 분말 직접 제조)

  • Shin, Gi-Wung;Ahn, Jong-Gwan;Kim, Dong-Jin;Kim, Sang-Bae;Ahn, Jea-Woo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • Fine nickel metal powder of uniform morphology, narrow size distribution, and high purity was prepared from high purity metal solution. Slurry reduction method for the synthesis of metal powder was applied with a special interest in their fine and spherical shape. The products were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Well dispersed ultrafine nickel powder with the particle size range of 100~200 nm was produced from Ni-hydrazine precursor using hydrazine as a reductant for 90 min reaction in 4.5 M NaOH solution.

The Effect of Fe-Oxide Addition on the Sintering Properties of Cast Iron Powder (주철분말(鑄鐵粉末)의 소결성에(燒結性) 미치는 산화철(酸化鐵) 첨가(添加)의 효과(效果))

  • Kim, Hyung-Soo;Kim, Chul-Bohm;Ra, Hyung-Young
    • Journal of Korea Foundry Society
    • /
    • v.10 no.1
    • /
    • pp.64-70
    • /
    • 1990
  • In order to lower the cabon content of sintered products below the solubility of austenite, Fe-oxide was added to cast iron powder of which matrix was pearlite. And the effects of it on some sintering properties and mechanical properties were investigated. Roughly speaking, the linear shrinkage, density, and tensile strendth of sintered properties increased as the sintering temperature became higher, the size distribution of powder became finer, and the amount of Fe-oxide added became less. The maximum tensile strength of sintered products was $78㎏f/mm^2$ more or less, of which carbon content was 1.4% and sintering temperature was $1180^{\circ}C$.

  • PDF

Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites (메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질)

  • HAN GIL-YOUNG;AHN DONG-GU;KIM JIN-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF

A Study on Characteristics of Laser Cladding Layer of STS316L (STS316L 분말의 레이저 클래딩층 특성에 관한 연구)

  • Hong, SungMoo;Oh, JaeYong;Kim, DongSeob;Chang, SeungCheol;Shin, BoSung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.53-56
    • /
    • 2017
  • Laser cladding is a technique for forming beads by melt-sintering with a laser while directly feeding metal powder onto the base material through nozzles. This technique, which is applied in laser surface treatment technology, is useful for repairing broken or worn parts by allowing selective formation of the surface layer of the base metal material. In this paper, laser cladding process was performed on STS316L powder using high power continuous wave laser with IR wavelength and the cladding characteristics according to process conditions were experimentally analyzed.

A Study on the Manufacturing Rapid Prototype Using Bronze (Bronze를 이용한 쾌속조형제조에 대한 연구)

  • 전병철;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.204-209
    • /
    • 1995
  • The implementation of rapid prototyping technologies has been developed for automotive engineering by utilizing concurrent engineering principes integrated with slective laser sintering. The Selective Laser Sintering, in which a part is generated in layers form powder using a computer-controlled laser scanning apparatus and power feed system. An over view of the basic principles of SLS Machine operation is given. Binding mechanisms are described for power which becomes thermally activated bye the scanning laser beam; viscous flow and melting of a low-melting-point phase in powder. The production of parts from metal is described, including post processing to improve structural integrity and induce a transformation.

  • PDF

Advanced PM Processes for Medical Technologies

  • Petzoldt, Frank;Friederici, Vera;Imgrund, Philipp;Aumund-Kopp, Claus
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Medical technologies are gaining in importance because of scientific and technical progress in medicine and the increasing average lifetime of people. This has opened up a huge market for medical devices, where complex-shaped metallic parts made from biocompatible materials are in great demand. Today many of these components are already being manufactured by powder metallurgy technologies. This includes mass production of standard products and also customized components. In this paper some aspects related to metal injection molding of Ti and its alloys as well as modifications of microstructure and surface finish were discussed. The process chain of additive manufacturing (AM) was described and the current state of the art of AM processes like Selective Laser Melting and electron beam melting for medical applications was presented.

Synthesis and Properties of Fe-Ni Nano-sized Powders using Metal Nitrates (금속질산염을 이용한 Fe-Ni 나노분말의 제조 및 특성)

  • Joo, Min-Hee;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.191-195
    • /
    • 2009
  • The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate have been investigated. $Fe_2O_3$/NiO composite powders were prepared by chemical solution mixing of Fe- and Ni-nitrate and calcination at $350^{\circ}C$ for 2 h. The calcined powders were hydrogen-reduced at $350^{\circ}C$ for 30 min. The calcination and hydrogen-reduction behavior of Fe- and Ni-nitrate were analyzed by TG in air and hydrogen atmosphere, respectively. TG and XRD analysis for hydrogen-reduced powders revealed that the $Fe_2O_3$/NiO phase transformed to $FeNi_3$ phase at the temperature of $350^{\circ}$. The activation energy for the hydrogen reduction, evaluated by Kissinger method, was measured as 83.0 kJ/mol.