• Title/Summary/Keyword: powder melting

Search Result 356, Processing Time 0.029 seconds

Mechanical Properties of 316L manufactured by Selective Laser Melting (SLM) 3D printing (Selective Laser Melting (SLM) 방식 3D Printing으로 제조한 스테인레스 316L 기계적 물성 분석)

  • Park, Sun Hong;Jang, Jin Young;Noh, Yong Oh;Bae, Byung Hyun;Rhee, Byong Ho;Eo, Du Rim;Cho, Jung Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.872-876
    • /
    • 2017
  • Laser Based 3D Printing is an recently advance manufacturing technology for making complex shape comopnent such as automobile and aerospace. So in this article, stainless steel 316L was manufactured by Selective Laser Melting (SLM) and Laser Melting Deposition (LMD) method. SLM is an additive manufacturing process that allow for the manufacture of small and complex component by laser melting and solidification of powder in bed using a high intensity laser beam. The results showed that the laser scanning speed and laser power affects the defect, microstructure and the hardness of the components.

  • PDF

Research on Powder Metallurgy Technology in Fusion Materials in China

  • Ge, Chang-Chun;Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.896-897
    • /
    • 2006
  • In the viewpoint of engineering, materials problem is a key problem, which determines whether the exploitation of fusion energy will be success. The most important class of fusion materials is plasma-facing materials (PFM). W, as high Z high melting-point metal is one of the most important candidate materials due to its high plasma erosion resistance. Improving the ductility of W and W based alloy, lowering its ductile-brittleness transition temperature for meeting the requirements of fusion application is an important task. In this paper, severalpowder meatllurgy methods of fabricating W and W based materials are being investigated.

  • PDF

A Study on the Formation Phase of Self-propagating High-temperature Synthesis of Ti-Al-C alloys (Ti-Al-C 합금의 고온 자전 합성 반응시 생성상에 관한 연구)

  • 문종태
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.149-157
    • /
    • 1995
  • In this study, an attempt was made to fabricate TiAl as well as its in situ composite via combustion synthesis. The processing variable of the combustion synthesis which include aluminum content and the heating rate were found to affect the combustion temperature. The combustion temperature measured, however, was lower than the melting temperature of TiAl and the reaction product were found to include incomplet reaction products. Carbon was added in order to increase the combustion temperature as well as to form in situ reinforcements. The reaction products showed homogeneous microstructures with carbide phases formed within indicating that the addition of carbon increased the combustion temperature above the melting temperature of TiAl.

  • PDF

Effect of Process Parameters on Surface Roughness and Porosity of Direct Laser Melted Bead (DLM 공정시 공정변수에 따른 내부공극률과 표면조도 변화)

  • Kim, T.H.;Jang, J.H.;Jeon, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.575-580
    • /
    • 2011
  • Direct laser melting(DLM) is promising as a joining method for producing parts for automobiles, aerospace, marine and medical applications. An advantageous characteristic of DLM is that it affects the parent metal very little. The mechanical properties of parts made by DLM are strongly affected by the porosity and surface roughness of the laser melted beads. This is a systematic study of the effects of the porosity and surface roughness of laser melted beads using various processing parameters, such as laser power, scan rate and overlapping ratio of the fill spacing. The specimens were fabricated with 316L and 304L austenitic stainless steel powder. Dense parts with low porosity were obtained at low laser scan speed, as it increased the aspect ratio of the parental material and the depth of penetration. The variations of surface roughness were examined at various processing parameters such as overlapping ratio and laser power.

Thermoelectric Properties of Vacuum Hot-pressed $Ba_8Al_{16}Si_{30}$ Clathlate

  • Lee, Joo-Ho;Lee, Jung-Il;Kim, Young-Ho;Kim, Il-Ho;Jang, Kyung-Wook;Ur, Soon-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1198-1199
    • /
    • 2006
  • Type I clathrate $Ba_8Al_{16}Si_{30}$ was produced by arc melting and hot pressing and thermoelectric properties were investigated. Negative Seebeck coefficient at all temperatures measured, which means that the majority carriers are electrons. Electrical conductivity decreased by increasing temperature and thermal conductivity was 0.012 W/cmK at room temperature and dimensionless thermoelectric figure of merit (ZT) was 0.01 at 873K.

  • PDF

TiB2-Cu Interpenetrating Phase Composites Produced by Spark-plasma Sintering

  • Kwon, Young-Soon;V. Dudina, Dina;I. Lomovsky, Oleg;A. Korchagin, Michail;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.168-171
    • /
    • 2003
  • Interpenetrating phase composites of $TiB_2$-Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.

BRAZEABILITY AND MICROSTRUCTURE OF Ag-28Cu MICROJOINING FILLER PRODUCED BY HIGH ENERGY BALL MILLING

  • ASHUTOSH SHARMA;MYOUNG JIN CHAE;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1323-1327
    • /
    • 2020
  • In this paper, we have studied the evolution of morphology and brazing behavior of Ag-28Cu alloy filler processed by high energy ball milling. The milling of the powder mixture was carried out for 40 h. The structural and morphological analyses were performed by the X-ray diffraction and scanning electron microscopy. The melting temperature of the braze filler was determined by differential thermal analysis. The filler wetting properties were assessed from the spread area ratio measurements on various Ti substrates. The results indicate that the ball milling can effectively depress the filler melting point and enhance the brazeability. The milled powder mixture showed Ag(Cu) solid solution with a crystallite size of 174-68 nm after 40 h. It was shown that the high energy ball milling can be a potential method to develop low temperature brazing fillers for advanced microjoining applications.

Fabrication and Characterization of Thermoelectric Thick Film by Using Bi-Te-Sb Powders

  • Yu, Ji-Hun;Bae, Seung-Chul;Ha, Gook-Hyun;Kim, Ook-Jung;Lee, Gil-Gun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.430-431
    • /
    • 2006
  • Thermoelectric thick film was fabricated by screen printing process with using p-type Bi-Te-Sb powders. The powder was synthesized by melting, milling and sintering process and hydrogen reduced to enhance the thermoelectric property. The thick film of Bi-Te-Sb powder was fabricated by screen printing method and baked at the optimized conditions. The thermal conductivity, the electrical resistivity and Seeback coefficient of thick film were measured and the thermoelectric performance was analyzed in terms of film characteristics and its microstructure. Finally, the feasibility of thermoelectric thick film into micro cooling device on CPU chip was discussed in this study.

  • PDF

Mechanically Driven Decomposition of Intermetallics

  • Kwon, Young-Soon;Kim, Hyun-Sik;Gerasimov, Konstantin B.
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.422-432
    • /
    • 2002
  • Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): $\alpha$(${\alpha}_1$) bcc solid solution, $\alpha$+$\beta$-phase ($Fe_{2-x}Ge$), $\beta$-phase, $\beta$+FeGe(B20), FeGE(B20), FeGe(B20)+$FeGe_2$,$FeGe_2$,$FeGe_2$+Ge, Ge. Incongruently melting intermetallics $Fe_6Ge_5$ and $Fe_2Ge_3$ decompose under milling. $Fe_6Ge_5$ produces mixture of $\hat{a}$-phase and FeGe(B20), $Fe_2Ge_3$ produces mixture of FeGe(B20) and $FeGe_2$ phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation $Fe_5Sn_3$ and $FeSn_2$ phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic $Fe_5Sn_3$ phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.

Fabrication of Pure Refractory Metals by Resistance Sintering under Ultra High Pressure

  • Zhou, Zhang-Jian;Du, Juan;Song, Shu-Xiang;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1323-1324
    • /
    • 2006
  • Refractory materials, such as W and Mo, are very useful elements for use in high-temperature applications. But it is not easy to fabricat pure W and Mo with very high density and retaining very fine grain size because of their high melting point. In this paper, a newly developed method named as resistance sintering under ultra high pressure was use to fabricate pure fine-grained W and Mo. The microstructure was analysis by SEM. The sintering mechanism is primary analyzed. Basic physical property of these sintered pure W and Mo, such as hardness, bend strength, are tested.

  • PDF