• 제목/요약/키워드: powder fabrication

검색결과 1,023건 처리시간 0.021초

Fabrication of Y2O3 doped ZrO2 Nanopowder by Reverse Micelle and Sol-Gel Processing

  • Kim, Hyun-Ju;Bae, Dong-Sik
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.568-572
    • /
    • 2011
  • The preparation of $Y_2O_3$-doped $ZrO_2$ nanoparticles in Igepal CO-520/cyclohexane reverse micelle solutions is studied here. In this work, we synthesized nanosized $Y_2O_3$-doped $ZrO_2$ powders in a reverse micelle process using aqueous ammonia as the precipitant. In this way, a hydroxide precursor was obtained from nitrate solutions dispersed in the nanosized aqueous domains of a microemulsion consisting of cyclohexane as the oil phase, with poly (oxyethylene) nonylphenylether (Igepal CO-520) as the non-ionic surfactant. The synthesized and calcined powders were characterized by thermogravimetrydifferential thermal analysis (TGA-DTA), X-ray diffraction analysis (XRD) and transmission electron microscopy (TEM). The crystallite size was found to nearly identical with an increase in the water-to-surfactant (R) molar ratio. A FTIR analysis was carried to monitor the elimination of residual oil and surfactant phases from the microemulsion-derived precursor and the calcined powder. The average particle size and distribution of the synthesized $Y_2O_3$-doped $ZrO_2$ were below 5 nm and narrow, respectively. The TG-DTA analysis showed that the phase of the $Y_2O_3$-doped $ZrO_2$ nanoparticles changes from the monoclinic phase to the tetragonal phase at temperatures close to $530^{\circ}C$. The phase of the synthesized $Y_2O_3$-doped $ZrO_2$ when heated to $600^{\circ}C$ was tetragonal $ZrO_2$.

스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가 (Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process)

  • 김민성;김영희;송호연;민영기;이병택
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

고온 산소분리막용 고강도 다공성 지지체 제조 및 기계적 특성 연구 (Fabrication and Mechanical Properties of High-strength Porous Supports for High Temperature Oxygen Transport Membrane)

  • 박금숙;성영훈;유지행;우상국;한문희
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.423-428
    • /
    • 2013
  • Porous YSZ ceramics are fabricated using 3 mol% yittria-stabilized zirconia (3YSZ) and NiO with different particlesizes (0.6 and 7 ${\mu}m$). Nickel oxide (NiO) is added to the YSZ powder as a pore former with different amounts(40, 50, and 60 vol%) and at different sintering temperatures (1350 and $1400^{\circ}C$) are applied in order to evaluate the temperature effects on the pore and mechanical properties. Heat treatment is conducted after sintering at $700^{\circ}C$ in $H_2$ for the NiO reduction process; then, Ni is removed using a $HNO_3$ etchant solution. According to the NiO contentand sintering temperatures, 41-67% porous YSZ ceramic is obtained and the flexural strength increases, while the porosity decreases with an increasing sintering temperature. The optimum flexural strength ($136.5{\pm}13.4MPa$) and porosity (47%) for oxygen transport porous YSZ membrane can be obtained with 40 vol% of 7 ${\mu}m$ NiO particle at a sintering temperature of $1350^{\circ}C$.

보로실리케이트 유리의 이온교환에 의한 고강도 투명방탄소재의 제조 (Fabrication of High Strength Transparent Bulletproof Materials by Ion Exchanged Borosilicate Glass)

  • 김영환;심규인;임재민;최세영
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.1121-1126
    • /
    • 2010
  • Borosilicate glass (81% $SiO_2$-2% $Al_2O_3$-13% $B_2O_3$-4% $Na_2O_3$) was prepared, and the glass was ion exchanged in $KNO_3$ powder containing different temperature and time. The $K^+-Na^+$ ion exchange takes place at the glass surface and creates compressed stress, which raise the mechanical strength of the glass. The depth profile of $Na^+$ and $K^+$ was observed by electron probe micro analyzer. With the increasing heat-treatment time from 0min to 20min, the depth profile was increased from 17.1um to 29.4um, but mechanical properties were decreased. It was also found out that excessive heat treatment brings stress relaxation. The Vickers hardness, Fracture Toughness and bending strength of ion exchanged samples at $570^{\circ}C$ for 10min were $821.8H_v$, $1.3404MPa{\cdot}m^{1/2}$, and 953MPa, which is about 120%, 180%, and 450% higher than parent borosilicate glass, respectively. Transmittance was analyzed by UV-VIS-NIR spectrophotometer. Transmittance of ion exchanged borosilicate glass was decreased slightly at visible-range. It can be expected that transparent bulletproof materials in more light-weight and thinner by ion exchanged borosilicate glass.

친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구 (A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials)

  • 김재철;이동우;프라바카;송정일
    • Composites Research
    • /
    • 제33권4호
    • /
    • pp.213-219
    • /
    • 2020
  • 최근 플라스틱 폐기물로 인한 환경 문제가 이슈화되면서 친환경 소재에 대한 관심이 점점 증가하고 있으며, 이에 따라 천연섬유를 활용한 복합재의 연구가 지속적으로 이루어지고 있지만 친환경 복합재의 강도나 계면 접착력에 대한 연구가 많이 부족한 실정이다. 복합재료의 강도나 계면 접착력을 향상시키는 방법들 중 한 가지 방법은 나노 입자를 첨가하여 기계적 물성을 향상시키는 방법이 있다. 본 연구에서는 기존에 사용되는 고가의 나노소재를 대체할 수 있는 친환경적이면서 경제적인 천연섬유를 해초로부터 추출하여 첨가제를 제조하고, 복합재료의 제조 및 기계적 특성평가를 수행하였다. 시험결과 제조한 첨가제가 복합재료의 인장, 굽힘, 충격 등의 물성 향상에 효과가 있을 뿐만 아니라 친환경성과 경제성도 가지고 있어 후속연구를 통해 다양한 분야에 적용할 수 있을 것이라 기대된다.

Fabrication, Microstructure and Compression Properties of AZ31 Mg Foams

  • Zhao, Rui;Li, Yuxuan;Jeong, Seung-Reuag;Yue, Xuezheng;Hur, Bo-Young
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.314-319
    • /
    • 2011
  • Melt foaming method is one of cost-effective methods to make metal foam and it has been successfully applied to fabricate Mg foams. In this research, AZ31 Mg alloy ingot was used as a metal matrix, using AlCa granular as thickening agent and $CaCO_3$ powder as foaming agent, AZ31 Mg alloy foams were fabricated by melt-foaming method at different foaming temperatures. The porosity was above 41.2%~73.3%, pore size was between 0.38~1.52 mm, and homogenous pore structures were obtained. Microstructure and mechanical properties of the AZ31 Mg alloy foams were investigated by optical microscopy, SEM and UTM. The results showed that pore structure and pore distribution were much better than those fabricated at lower temperatures. The compression behavior of the AZ31 Mg alloy foam behaved as typical porous materials. As the foaming temperature increased from $660^{\circ}C$ to $750^{\circ}C$, the compressed strength also increased. The AZ31 Mg alloy foam with a foaming temperature of $720^{\circ}C$ had the best energy absorption. The energy absorption value of Mg foam was 15.52 $MJ/m^3$ at a densification strain of 52%. Furthermore, the high energy absorption efficiencies of the AZ31 Mg alloy foam kept at about 0.85 in the plastic plateau region, which indicates that composite foam possess a high energy absorption characteristic, and the Vickers hardness of AZ31 Mg alloy foam decreased as the foaming temperature increased.

Fabrication Methods of Porous Ceramics and Their Applications in Advanced Engineering - Large Flat Precision Plate for Flat Display Industries

  • Matsumaru, Koji;Ishizaki, Kozo
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Normal sintering process of producing porous ceramics is not to sinter perfectly, i.e., stop sintering in middle-process. Our porous ceramic materials are a product of complete sintering. For example if one want to make a porous carborundum, raw carborundum powder is sintered at either lower temperatures than normal sintering temperature or shorter sintering periods than normal sintering time to obtain incompletely sintered materials, i.e., porous carborundum. This implies normally sintered porous ceramic materials can mot be used in high vacuum conditions due to dust coming out from uncompleted sintering. We could produce completely sintered porous ceramic materials. For example, we can produce porous carborundum material by using carborundum particles bonded by glassy material. The properties of this material are similar to carborundum. We could make quasi-zero thermal expansion porous material by using carborundum and particles of negative thermal expansion materials bonded by the glassy material. We apply to sinter them also by microwave to sinter quickly. We also use HIP process to introduce closed pores. We could sinter them in large size to produce $2.5m{\times}2.5m$ ceramic plate to use as a precision plate for flat display industries. This flat ceramic plate is the world largest artificial ceramic plate. Precision plates are basic importance to any advanced electronic industries. The produced precision plate has lower density, lower thermal expansivity, higher or similar damping properties added extra properties such as vacuum vise, air sliding capacity. These plates are highly recommended to use in flat display industries. We could produce also cylindrical porous ceramics materials, which can applied to precision roller for polymer film precision motion for also electronic industries.

  • PDF

스피넬계 흑색 안료를 이용한 흑색 지르코니아 세라믹스의 제조 및 특성분석 (Preparation and Characterization of Black Zirconia Ceramics by Black Color Spinel Pigment)

  • 이광호;이용석;박주석;이병하
    • 한국세라믹학회지
    • /
    • 제45권4호
    • /
    • pp.214-219
    • /
    • 2008
  • The zirconia ceramics are widely used because of their excellent mechanical properties. Recently, many researches to make a colored zirconia was achieved to satisfy the individual aesthetic requirements. In this study, the synthesis of black-color spinel-based inorganic pigments which are stable above $1400^{\circ}C$ and the fabrication of black-colored zirconia using the synthesized pigments are investigated. Inorganic pigments which have spinel structure and near black color were synthesized by a solid state reaction method using a $Fe_2O_3,\;Cr_2O_3$, CoO and NiO powder as a starting materials at $1600^{\circ}C$. Most of synthesized pigments were black colored spinel phases and single spinel phase was successfully synthesized at the composition range of $Cr_2O_3:25{\sim}35%,\;Fe_2O_3:45{\sim}55%$, CoO:20% and NiO:$6{\sim}10%$. The black-colored zirconia was fabricated at $1410^{\circ}C$ with the 5 wt% synthesized pigments and their properties were evaluated. The results showed that the strength value was more than 848 MPa, absorption rate was 0.1%, the brightness of color was $L^*:40{\sim}42$, the tone of color is $a^*:0.2{\sim}0.8$ and $b^*:-1.1{\sim}2.4$. As a result, the black-colored zirconia was suitable for a artificial jewelry or decoration zirconia goods.

전기저항형 금속산화물 센서의 인쇄공정 최적화에 관한 연구 (Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor)

  • 이석환;구지은;이문진;정정열;장지호
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.353-358
    • /
    • 2016
  • In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed $10^2$ times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of $127^{\circ}C$ at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of $27.6^{\circ}C$ in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.