• Title/Summary/Keyword: powder extrusion technology

Search Result 79, Processing Time 0.021 seconds

Multi-step Metals Additive Manufacturing Technologies

  • Oh, Ji-Won;Park, Jinsu;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.256-267
    • /
    • 2020
  • Metal additive manufacturing (AM) technologies are classified into two groups according to the consolidation mechanisms and densification degrees of the as-built parts. Densified parts are obtained via a single-step process such as powder bed fusion, directed energy deposition, and sheet lamination AM technologies. Conversely, green bodies are consolidated with the aid of binder phases in multi-step processes such as binder jetting and material extrusion AM. Green-body part shapes are sustained by binder phases, which are removed for the debinding process. Chemical and/or thermal debinding processes are usually devised to enhance debinding kinetics. The pathways to final densification of the green parts are sintering and/or molten metal infiltration. With respect to innovation types, the multi-step metal AM process allows conventional powder metallurgy manufacturing to be innovated continuously. Eliminating cost/time-consuming molds, enlarged 3D design freedom, and wide material selectivity create opportunities for the industrial adoption of multi-step AM technologies. In addition, knowledge of powders and powder metallurgy fuel advances of multi-step AM technologies. In the present study, multi-step AM technologies are briefly introduced from the viewpoint of the entire manufacturing lifecycle.

Preparation Condition and Product Quality of Precooked Redbean Porridge (즉석팥죽 제조를 위한 가공조건 및 제품의 품질)

  • Kim, Chong-Tai;Kim, Bok-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.305-309
    • /
    • 1994
  • Precooked powder of redbean porridge (RP) was prepared by the series of process extrusion, drying, milling and blending with a mixture of whole redbean flour and corn starch and others. The optimum process and quality of products for RP were investigated. After extrusion under the moisture content 24 to 26%, twin screw speed 350 rpm, extrusion temperature 150 to $155^{\circ}C$ and feed rate 60 kg/hr, the product had a higher quality with its natural redbean flavor/color. During the extrusion process, extrusion temperature and specific mechanical energy increased from 150 to $198^{\circ}C$ and from 134 to 144 kwh/ton respectively, as the amount of addition water decreased from 6 to 2 kg/hr. By the hot air drying of redbean extrudate (RE). it could be dried below to 4% moisture content, of which level considered as an optimal moisture content for anti-caking of the powdered product, at $80^{\circ}C$ for 4hrs and at $100^{\circ}C$ for 1.5 hrs respectively. In the sieve analysis of extrudate powder, when the product milled through a mesh size of 0.5 mm or 1.0 mm, about 80% or 65% of the feed was passed a 65 mesh screen respectively. Moisture absorption of final blended products was formed a cake under 100% of relative humidity after 13 hrs of storage. As the amount of RE powder reduced, the flavor score of products decreased by sensory evaluation of products prepared by the different ratio of RE powder, corn starch and sugar.

  • PDF

Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder)

  • Gui, Ying;Ryu, Gi-Hyung
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.146-153
    • /
    • 2014
  • A systematic comparison of the physicochemical properties of white ginseng (WG), extruded white ginseng (EWG), red ginseng (RG), and extruded red ginseng (ERG) was performed. The aim of the present study was to identify the effects of the physicochemical properties of ginseng by extrusion cooking. The highest value of the water absorption index (WAI) was 3.64 g/g obtained from EWG, and the highest value of the water solubility index (WSI) was 45.27% obtained from ERG. The ERG had a better dispersibility compared with other samples. Extrusion cooking led to a significant increase in acidic polysaccharide and total sugar content but resulted in a decrease in crude fat and reducing sugar contents. Enzyme treatment led to a sharp increase in acidic polysaccharide content, especially the cellulose enzyme. Extrusion cooking led to a significant increase in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power, and the increases in WG and RG were 13.56% (0.038) and 3.56% (0.026), respectively. The data of this study provide valuable information about the effects of extrusion on quality changes of EWG and ERG.

Effect of Ball milling Time on Graphite Dispersion and Mechanical Properties in Rapidly Solidified 6061 Al Composite (급속응고 6061Al/Graphite 복합재료의 볼밀링 시간에 따른 흑연 분산거동 및 기계적 특성)

  • Son, Hyeon-Taek;Lee, Jae-Seol;Hong, Soon-Jik;Chun, Byong-Sun
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2009
  • A composite of rapidly solidified Al-6061 alloy powder with graphite particle reinforcements was prepared by ball milling and subsequent hot extrusion. The microstructure and mechanical properties of these composites were investigated as a function of milling time. With increasing milling time, the gas atomized initially and spherical powders became elongated with a maximum aspect ratio after milling for 30 h. Then, refinement and spheroidization were achieved by further milling to 70 h with a homogeneous and fine dispersion of graphite particles forming between the matrix alloy layers. The best compression and wear properties were obtained in the powder milled for 70 h, associated with the increased fine and homogeneous distribution of graphite particles in the aluminum alloy matrix.

Effect of Extrusion Temperature on Puffing of White and Red Ginseng (압출성형 온도가 백삼과 홍삼의 팽화에 미치는 영향)

  • Kim, Bong-Su;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1109-1113
    • /
    • 2005
  • The objective of this study was to determine the effect of extrusion temperature on puffing of white and red ginseng powder. The extrusion variables were feed material (red and white ginseng powder) and die temperature $(100\;and\;115^{\circ}C)$. The analyzed characteristics of ginseng extrudates were sectional expansion index, microstructure and rheological properties. Most of biopolymer was highly puffed at higher extrusion temperature, but the cross-sectional expansion of white and red ginseng powder was higher at 1000e and longitudinal expansion seems to higher at $115^{\circ}C$. White and red ginseng powder were puffed inconsistently and discontinuously at $115^{\circ}C$. The scanning electron microphotograph of extruded white ginseng was uniform air cell distribution at 100oe, but pore size increased at $115^{\circ}C$ and had fine uniformity due to pore explosion. White ginseng and its extrudate were pseudoplastic. Intrinsic viscosity was lower as a result of increased die temperature. The cross-sectional expansion seems to be inconsistent and decreased due to decrease in melt viscosity at $115^{\circ}C$.

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Physiochemical Characteristics of Extruded Angelica gigas Nakai Depending on the Extrusion Processing Parameter (압출성형 공정에 따른 참당귀 추출물의 이화화적 특성)

  • Lee, Hee Jung;Jeong, Heon Sang;Park, Chun Geon;Lee, Jeong Hoon;Park, Chung Berm;Kim, Chong Tai;Choi, Ae Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.349-362
    • /
    • 2014
  • This study was designed to maximize extract yields of functional components in Angelica gigas Nakai by extrusion process. In addition, the optimizing condition of the extrusion process was established to increase the extraction of the functional components in A. gigas. The total polyphenol was increased by 40% compared to a control. And the optimizing condition was that the screw speed was 62.76 rpm, the amount of A. gigas powder was 34.79 kg/h, and the amount of water was 4.44 kg/h. The result of antioxidant activities of A. gigas extrusion, the inhibition of oxidization had the effect of 10.29 ~ 14.59% compared to a control. The content of decursin and decursinol angelate, which were index components, was 6.37%; it was increased by 16.64% compared to a control (5.31%) and showed a significantly difference (p < 0.05). And the optimizing condition was the screw speed 93.71 rpm, the amount of A. gigas powder was 28.67 kg/h, and the amount of water was 9.9 kg/h.

Effect of the Energy of Extrusion on the Starch Gelatinization (압출성형 에너지가 녹말의 호화에 미치는 영향)

  • Chung, Moon-Young;Lee, Seung-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.72-76
    • /
    • 1997
  • The effect of the energy supplied in extrusion on the starch gelatinization was analyzed. The energy needed for extrusion is generated by motor and heater. The motor energy is transformed into a thermal energy by heat dissipation and a mechanical energy, and the heater energy is of a thermal energy. At the low barrel temperature $({\leq}80^{\circ}C)$, it was found out there are two kinds of thermal energy by heat dissipation: one by a powder friction of corn grit with low moisture contents and the other by a viscous dissipation of corn grit with high moisture contents. The dissipated thermal energy by the powder friction was more effective on the starch gelatinization than that by the viscous dissipation. The effect of the mechanical energy was also analyzed in terms of a relative mechanical energy. The gelatinization of corn grit with high moisture contents $({\geq}33%)$ largely depended on the change in the relative mechanical energy, whereas that with low moisture contents $({\leq}30%)$ hardly depended on it.

  • PDF

Microstructure Control of Cu-Ni-Zr-Ti Metallic Glass Composites by Multi-Pass Extrusion Process (다중압출공정을 이용한 Cu-Ni-Zr-Ti 비정질 복합재의 미세조직제어)

  • Kim, Taek-Soo;Lee, Jin-Kyu
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.386-390
    • /
    • 2007
  • In order to, simultaneously, synthesize and control the size of microstructure of amorphous/crystalline composites, a repeated extrusion process was performed using the gas atomized $Cu_{54}Ni_6Zr_{22}Ti_{18}$ metallic glass powders and the crystalline brasses. The size of microstructure in the resultant composites was varied depending on the pass of extrusion as well as on the area reduction ratio. The microstructure could be estimated using an equation of $r_n=r_{n-1}/R^{1/2}$, where R is reduction ratio and $r_n$ is the resultant radius of the extruded bar after n pass. Theory of microstructural refinement as well as the relationship between the resultant microstructures and mechanical properties was discussed.

Creep Behavior of Hot Extruded Al-5% SiC Composite Powder

  • Monnazah, A. Hosseini;Simchi, A.;Reihani, S.M. Seyed
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1059-1060
    • /
    • 2006
  • The creep behavior of Al-5vol.% SiC composite was investigated. The composite powder was produced by mechanical milling and hot extruded at $450^{\circ}C$ at ratio of 16:1. A creep test was carried out at a constant load at 598, 648, and 673 K. Using the steady-state equations, the threshold stress and the stress exponent of the creep as a function of temperature were determined. The stress exponent was found to be 3 at the temperature of 673 K and 8 at 598 and 648 K. The dependency of the threshold stress to temperature obeys the Arrhenius relationship with the energy term of $29\;kJ\;mole^{-1}$.

  • PDF