• Title/Summary/Keyword: powder casting

Search Result 235, Processing Time 0.023 seconds

Production of Casting Cores using Powder Bed Fusion Techniques (분말적층용융 기술을 활용한 산업용 중자 제작)

  • Choi, Jin-Yong;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.239-244
    • /
    • 2019
  • Traditional casting methods require long production lead time and high cost while not accommodating design changes easily. One of the technological alternatives to improve casting method to meet diversifying needs is Additive Manufacturing (AM). Among the 7 AM techniques, Powder Bed Fusion (PBF) is deemed most appropriate for casting applications. Currently, most AM machines are imported; therefore limiting the scope of available services and applications. This paper explores the domestic development of AM machines as well as the applications in casting. Each chapter describes development phases of PBF machines, applicable materials and parameter settings, while the last chapter illustrates a successful case of additive manufacturing industrial casting cores.

Texture Evolution in Ni Substrate Prepared by Powder Metallurgy and Casting Methods

  • Lim, Jun-Hyung;Kim, Kyu-Tae;Park, Eui-Cheol;Joo, Jin-Ho;Kim, Hyoung-Sub;Lee, Hoo-Jeong;Jung, Seung-Boo;Nah, Wan-Soo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1249-1250
    • /
    • 2006
  • Cube textured Ni substrate were fabricated for YBCO coated conductors from the initial specimens prepared by powder metallurgy (P/M) and casting and the effects of annealing temperature and reduction ratio on texture formation and microstructural evolution were evaluated. The initial specimens were rolled and then annealed in the temperature at $600^{\circ}C{\sim}1200^{\circ}C$. A strong cube texture formed for P/M substrate, and the degree of texture did not significantly vary with annealing temperature of $600^{\circ}C{\sim}1100^{\circ}C$. On the other hand, the texture of casting substrate was more dependent on the annealing temperature and twin texture and several minor texture components started to form at $1000^{\circ}C$.

  • PDF

Evaluation of Gelation Characteristics with The Variation of Additive Contents in The Alumina Slurry for Gel Casting Process (겔 캐스팅 공정을 위한 알루미나 슬러리에서의 첨가제 함량 변화에 따른 겔화특성 평가)

  • Chung, J.K.;Oh, C.Y.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.290-295
    • /
    • 2022
  • Recently, the use of high-tech ceramic parts in functional electronic parts, automobile parts and semiconductor equipment parts is increasing. These ceramics materials are required to have high reproducibility, reliability, large size and complex shapes. The researchers initiated the work to develop a new shaping method called gel casting, which allows high performance ceramic materials with a complex shape to be produced. The manufacturing process parameters of gel casting include uniform mixing of the initiator, bubble removal, and slip injection. In this study, we analyzed the dispersion and gelation characteristics according to the change in the additive content of the alumina slurry in the gel casting process. The alumina slurry for gel casting was prepared by mixing a solvent, a monomer and a dispersant through a ball mill. Alumina powder and a gelation initiator were added to the mixed solution, and ball milling was performed for 24 hours. A viscosity of 6,435 cps and a stable zeta potential value were obtained under the conditions of alumina powder content of 55 vol% and dispersant 2.0 wt%. After curing for 12 hours by adding aps 0.1wt%, TEMED 0.2wt%, and Monomer 3, 5wt%, it was possible to separate from the molding cup, confirming that the gelation was completed.

Micro-deformation behavior of Brittle Hf-based Metallic Glass during Mechanical Milling (기계적 합금화 공정에 의한 Hf계 비정질 분말의 미세변형거동 관찰)

  • Kim, Song-Yi;Lee, A-Young;Cha, Eun-Ji;Kwon, Do-Hun;Hong, Sung-Uk;Lee, Min-Woo;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.246-250
    • /
    • 2018
  • In this study, we investigate the deformation behavior of $Hf_{44.5}Cu_{27}Ni_{13.5}Nb_5Al_{10}$ metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.

Rapid Tooling of Aluminum Shoes Mold Using Porous Mold (통기성 세라믹형을 이용한 알루미늄 신발금형의 쾌속제작)

  • Chung, Sung-Il;Jeong, Du-Su;Kim, Do-Kyung;Jeong, Hae-Do;Cho, Ku-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.62-67
    • /
    • 1999
  • The RP&M(Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. Recently RP products which are made of plastics, wax, and paper are used to verify the design of samples. But these products cannot be applied to the real mold because the strength enough to be a mold cannot be given by soft materials such as plastics. So RP products are copied to AFR(Al powder Filled Resin) molds or metal molds, which is called the RP&M. In this paper, RP&M is applied to a casting process. A porous casting mold, which is made from ceramic powder and binder, is used for rapid tooling of aluminum shoes molds.

  • PDF

Influence of Processing Conditions on PVDF Properties

  • Lebedev, S.M.;Gefle, O.S.;Semenikhin, M.V.
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.176-180
    • /
    • 2011
  • Study of the main properties of PVDF films produced by two processing technologies such as hot pressing from a melt or solution casting was the aim of this paper. All samples were prepared of as-received PVDF powder. First group of samples was prepared by the hot pressing. Second group of samples was prepared by the solution casting method. PVDF powder was dissolved in dimethylformamide. To characterize properties of samples, different experimental methods such as FRA (dielectric spectroscopy), IR-spectroscopy and DSC/TGA analysis were used in this work. It was found that IR-spectra of both studied groups do not change compared to that for virgin PVDF powder. It confirms that molecular structure is practically independent on the processing technology of samples. The only difference has been found that new band centered at $1723\;cm^{-1}$ appears for samples prepared by the hot pressing method. This absorption band is related with formation of C=C bonds in samples prepared by the hot pressing method in contrast both to PVDF powder and samples prepared by the solution casting method.

Microstructure and Soft Magnetic Properties of Fe-6.5 wt.%Si Sheets Fabricated by Powder Hot Rolling

  • Kim, Myung Shin;Kwon, Do Hun;Hong, Won Sik;Kim, Hwi Jun
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Fe-6.5 wt.% Si alloys are widely known to have excellent soft magnetic properties such as high magnetic flux density, low coercivity, and low core loss at high frequency. In this work, disc-shaped preforms are prepared by spark plasma sintering at 1223 K after inert gas atomization of Fe-6.5 wt.% Si powders. Fe-6.5 wt.% Si sheets are rolled by a powder hot-rolling process without cracking, and their microstructure and soft magnetic properties are investigated. The microstructure and magnetic properties (saturation magnetization and core loss) of the hot-rolled Fe-6.5 wt.% Si sheets are examined by scanning electron microscopy, electron backscatter diffraction, vibration sample magnetometry, and AC B-H analysis. The Fe-6.5 wt.% Si sheet rolled at a total reduction ratio of 80% exhibits good soft magnetic properties such as a saturation magnetization of 1.74 T and core loss ($W_{5/1000}$) of 30.7 W/kg. This result is caused by an increase in the electrical resistivity resulting from an increased particle boundary density and the oxide layers between the primary particle boundaries.

Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet (Fe-Si 전기강판 폐스크랩을 이용한 연자성 분말 및 테이프 제조기술)

  • Hong, Won Sik;Kim, Sang Hyun;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • This study focused on examining the possibility for recycling of Fe-Si electric sheet. We manufactured Fe-6.5Si mother alloy using by Fe-Si electric sheet scrap for transformer core materials. And then, soft magnetic alloy powder which diameter and shape were $45{\sim}150{\mu}m$ and sphere type was prepared by gas atomization process. As we compared to commercial Fe-6.5Si powder, its diameter distribution and microstructure of recycled powder was a similar. To investigate the possibility of reusing the soft magnetic composite sheet for electronics, recycled powder was treated to have a high aspect ratio (AR), and we finally obtained the 65~66 AR and $2.3{\mu}m$ thickness powder. To release the residual stress of powder, heat treatment was conducted under $300{\sim}400^{\circ}C$, $N_2$ gas. And then, soft magnetic sheet was made by tape casting process using by those powders. After the density and permeability of tape was measured, and we confirmed that the recycled Fe-Si electric sheet scrap was possible to reuse the soft magnetic materials of electronics.

Soft Magnetic Property of Ternary Fe-9.8Si-6.0Al Alloy Using by Recycling Fe-Si Electrical Steel Sheet Scrap (Fe-Si 전기강판 폐스크랩을 이용한 3원계 Fe-9.8Si-6.0Al 합금의 연자성 특성)

  • Hong, Won Sik;Yang, Hyoung Woo;Park, Ji-Yeon;Oh, Chulmin;Lee, Woo Sung;Kim, Seung Gyeom;Han, Sang Jo;Shim, Geum Taek;Kim, Hwi-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Fe-9.8Si-6.0Al mother alloy was manufactured using by Fe-3.5Si recycled scrap and Si powder. And then, soft magnetic alloy powder of $D_{50}$ size and sphere type were prepared by gas atomization process. To obtain the soft magnetic powder of a high aspect ratio, in the first, we conducted the ball milling process for 8 hours. And heat treatment was performed under $650^{\circ}C$, 2 hours and $N_2$ atmosphere condition for reducing the residual stress of the powder. Based on these process, we made around $50{\mu}m$ diameter Fe-9.8Si-6.0Al powder, which morphology and shape was a similar to the commercial Fe-Si-Al powder. Finally, the soft magnetic sheets were prepared by tape casting process using by those powders. The permeability of the tape casting sheet was measured, and we confirmed the possibility of reusing to the soft magnetic materials of Fe-Si electric sheet scrap.

Electrochemical Studies and Chemical Synthesis of Nanoscale YSZ Electrolyte Powder for Solid Oxide Fuel Cell (고체산화물 연료전지용 나노 YSZ전해질 분말 합성 및 단위셀의 전기화학적 평가)

  • Shin, Yu-Cheol;Kim, Young-Mi;Kim, Ho-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.299-302
    • /
    • 2009
  • Oxygen ionic conductors of YSZ electrolyte in SOFC unit cell are applied to anode and cathode as well as electrolyte to have triple-phase-boundaries(TPB) of electrochemical reaction, and it is required to decrease the sintering temperature of anode-supported electrolyte by the nanoscale of YSZ powder.In this report, nanoscale YSZ powder was synthesized by the chemical co-precipitation method. The particle size, surface area and morphology of the powder were observed by SEM and BET. Thin film electrolyte of under 10㎛ was fabricated by tape casting using the synthesized YSZ powder, and ionic conductivity and gas permiability of electrolyte film were evaluated. Finally, the SOFC unit cell was fabricated using the anode-supported electrolyte prepared by a tape casting method and co-sintering. Electrochemical evauations of the SOFC unit cell, including measurements such as power density and impedance, were performed and analyzed.

  • PDF