• Title/Summary/Keyword: powder X-ray diffraction

Search Result 1,001, Processing Time 0.07 seconds

Deposition of Polytetrafluoroethylene Thin Films by IR-pulsed Laser Ablation (Nd:YAG 레이저에 의한 폴리테트라플루오르에틸렌 박막 증착)

  • Park Hoon;Seo Yu-Suk;Hong Jin-Soo;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.58-63
    • /
    • 2005
  • PTFE (polytetrafluoroethylene) thin films were prepared from the pellets of the graphite doped PTFE via pulsed laser ablation with 1064 nm Nd:YAG laser. The graphite powder converts the absorbed photon energy into thermal energy which is transmitted to nearby PTFE. The PTFE is decomposed by thermal process. The deposited films were transparent and crystalline. SEM (scanning electron microscopy) and AFM (atomic force microscopy) analyses indicated that the film surface morphology changed to fibrous structure with increasing thickness. The fluorine to carbon ratios of the film were 1.7 and molecular axis was parallel with (100) Si-wafer substrate. These results obtained by XPS (X-ray photoelectron spectroscopy), FTIR (fourier transform infrared spectroscopy) and XRD (X-ray diffraction).

  • PDF

XRD and Image Analyis of Low Carbon Type Recycled Cement Using Waste Concrete Powder (폐콘크리트 미분말을 이용하여 제조한 저탄소형 클링커의 XRD 및 영상분석)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.252-253
    • /
    • 2014
  • This study is to XRD and image analysis of low carbon type recycled cement from waste concrete powder and cement raw materials. Waste concrete powder possible to low carbon type recycled cement in small part of additive materials. Also, low carbon type recycled cement using waste concrete powder is suitable for ordinary portland cement.

  • PDF

Synthesis and Microstructural Characterization of Cu-C Composite Metal Powder by Mechanical Alloying (기계적 합금화 방법에 의한 Cu-C계 복합금속분말의 제조 및 미세구조 제어 특성)

  • 이광민
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.42-47
    • /
    • 1997
  • It was investigated whether mechanical alloying (MA) processing could be more effective to the formation of metallic composite powder in Cu-C system. Elemental powder mixtures of Cu-70vo1.%C were mechanically alloyed with an attritor in an argon atmosphere and microstructural evolution was examined by X-ray diffraction analysis, scanning electron microscopy and transmission electron microscopy. It has been found that even with the high volume fraction of immiscible graphite in Cu-C system, the refinement with a few ten nanometer size as well as the highly uniform distribution of copper phases have been achieved by the MA processing.

  • PDF

Research on Microstructure and Properties of TiN, (Ti, Al)N and TiN/(Ti, Al)N Multilayer Coatings

  • Wang, She Quan;Chen, Li;Yin, Fei;Jia, Li
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.658-659
    • /
    • 2006
  • Magnetron sputtered TiN, (Ti, Al)N and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates have been characterized by using electron probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron spectroscopy (SEM), nanoindentation, scratcher and cutting tests. Results show that TiN coating is bell mouth columnar structures, (Ti, Al)N coating is straight columnar structures and the modulation structure has been formed in the TiN/(Ti, Al)N multilayer coating. TiN/(Ti, Al)N multilayer coating exhibited higher hardness, better adhesion with substrate and excellent cutting performance compared with TiN and (Ti, Al)N coating.

  • PDF

Fabrication and structural observation of amorphous V-Co alloy by mechanical alloying (MA법에 의한 V-Co계 비정질합금의 제조 및 구조분석)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • In the present study, we investigated the effect of mechanical alloying (MA) on the formation of amorphous VCo system through solid state reaction during ball milling. Two types of powder samples, ${\sigma}$-VCo intermetallic compound and $V_{50}Co_{50}$ powder mixture, were applied as a starting materials. With increasing milling time, a structural characteristics into the amorphous state is distinctly observed from the structural factor and radial distribution by X-ray diffraction. Amorphization has been observed in all two types of samples after the milling for 120 hrs. DSC spectrum of $V_{50}Co_{50}$ powder sample milled for 60 hrs indicates a sharp exothermic peak from the crystallization at $600^{\circ}C$. The structure factor, S(Q) and radial distribution function, RDF(r), observed by X-ray diffraction gradually change into a structure characteristic of an amorphous state with increasing MA time.

Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.370-374
    • /
    • 2014
  • Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.

Effect of Au Additive on The Bi Site in The Bi2-δAuδSr2CaCu2O8+δ (x=0~0.15) Superconductors (Bi2-δAuδSr2CaCu2O8+δ(x = 0~0.15) 산화물고온초전도체의 Bi 위치에 Au 혼합효과)

  • 이민수;최봉수;이정화;송기영;정성혜;홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.308-313
    • /
    • 2002
  • Samples with the norminal composition, $Bi_{2-x}Au_xSr_2CaCu_2O_{8+\delta}$ (x = 0, 0.05. 0.1, 0.15) were prepared by the solid-state reaction method. The superconducting properties, x-ray powder diffraction patterns, critical temperature and microstructure of surface were measured the samples. x-ray patterns show the single phase(2212) nature of the samples. But, the peaks of 2201 at $2\theta=30^{\circ}$ and Au peak at $2\theta=38.31^{\circ}$ are observed in the Au additive samples. The grain sire are enlarged with the increase of x. As the result of enlargement the grain size, the onset and offset critical temperature($T_c^{on}$,$T_c^{zero}$) increased with increase of x.

Preparation of electrostatic spray pyrolysis derived nano powder and hydroxyapatite forming ability (정전분무 열분해법에 의한 나노분말의 제조 및 하이드록시 아파타이트 형성능력 평가)

  • Lee, Young-Hwan;Jeon, Kyung-Ok;Jeon, Young-Sun;Lee, Ji-Chang;Hwang, Kyu-Seog
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.244-249
    • /
    • 2006
  • Electrostatic spray pyrolysis, a novel fabrication technique, has been used in this study to prepare calcium phosphate nano powders. Final annealing was done at $400^{\circ}C$ for 30min in air. The hydroxyapatite - forming ability of the annealed powder has been evaluated in Eagle's minimum essential medium solution (MEM). X-ray diffraction analysis, field emission - scanning electron microscope, energy dispersive X-ray spectroscope, and Fourier transform infrared spectroscope were used to characterized the annealed powders after immersion in MEM. The powder with an amorphous structure induced hydroxyapatite formation on their surfaces after immersion fer 15 days.

The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact (TiC 첨가량에 따른 개량된 A6013-3wt.%Si 합금 분말성형체의 미세조직 변화)

  • Yoo, Hyo-Sang;Kim, Yong-Ho;Son, Hyeon-Taek
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.28-33
    • /
    • 2022
  • Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 ㎛ which decreases to 12.5, 13.9, 10.8, and 10.0 ㎛ with increments in the amount of TiC.

Effect of B2O3 Additives on GaN Powder Synthesis from GaOOH (GaOOH로부터 GaN 분말의 합성에 미치는 B2O3의 첨가효과)

  • Song, Changho;Shin, Dongwhee;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.104-111
    • /
    • 2013
  • In this study, GaN powders were synthesized from gallium oxide-hydroxide (GaOOH) through an ammonification process in an $NH_3$ flow with the variation of $B_2O_3$ additives within a temperature range of $300-1050^{\circ}C$. The additive effect of $B_2O_3$ on the hexagonal phase GaN powder synthesis route was examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transformation infrared transmission (FTIR) spectroscopy. With increasing the mol% of $B_2O_3$ additive in the GaOOH precursor powder, the transition temperature and the activation energy for GaN powder formation increased while the GaN synthesis limit-time ($t_c$) shortened. The XPS results showed that Boron compounds of $B_2O_3$ and BN coexisted in the synthesized GaN powders. From the FTIR spectra, we were able to confirm that the GaN powder consisted of an amorphous or cubic phase $B_2O_3$ due to bond formation between B and O and the amorphous phase BN due to B-N bonds. The GaN powder synthesized from GaOOH and $B_2O_3$ mixed powder by an ammonification route through ${\beta}-Ga_2O_3$ intermediate state. During the ammonification process, boron compounds of $B_2O_3$ and BN coated ${\beta}-Ga_2O_3$ and GaN particles limited further nitridation processes.