• Title/Summary/Keyword: pounding phenomena

Search Result 11, Processing Time 0.018 seconds

Dynamic Behaviors of the Simply Supported Bridge System under Seismic Excitations Considering Pounding Effects (충돌을 고려한 지진하중을 받는 교량의 거동특성분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.231-238
    • /
    • 1999
  • The longitudinal dynamic behaviors of the bridge system consisting of multiple simply supported spans under seismic excitations are examined considering pounding effects. The pounding phenomena between adjacent girders which may consequently result in the span collapses are modeled by using the multi-degree-of-freedom system, The inelastic behavior of the RC pier is also considered by adopting the hysteresis loop model and the p-$\delta$ effect. Motions of the foundation and abutment are also considered but the local damage resulting from the girder pounding assumed to be neligible. The developed model is found to give the appropriate information of the dynamic characteristics of the bridge behavior. It is observed that the pounding effect becomes significant as the peak acceleration of the seismic excitation increases. Under minor earthquakes the pounding tends to increase the relative displacements while under strong earthquakes it tends to decrease the relative displacements by restricting the longitudinal girder motions, therefore it is suggested that the pounding effects should be considered in the analysis of the relative displacements of the longitudinally adjacent girder motions.

  • PDF

Effects of Pounding at Expansion Joints of Concrete Bridges

  • Kim, Jong-In;Kim, Sang-Hoon
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • This paper presents the results of a study on the effects of pounding at expansion joints of concrete bridges under earthquake ground motions. An engineering approach, rather than continuum mechanics, is emphasized. First, the sensitivity analysis of the gap element stiffness is performed. Second, usefulness of the analysis method for simulation of pounding phenomena is demonstrated. Third, the effects of pounding on the ductility demands measured in terms of the rotation of column ends are investigated. Two-dimensional FE analysis using a bilinear hysterestic model for bridge substructure joints and a nonlinear gap element for the expansion joint is performed on a realistic bridge with an expansion joint. Effects of the primary factors on the ductility demand such as gap sizes and characteristics of earthquake ground motion are investigated through a parametric study. The major conclusions are that pounding effect is generally negligible on the ductility demand for wide practical ranges of gap size and peak ground acceleration, but is potentially significant at the locations of impact.

  • PDF

Effect of earthquake induced-pounding on the response of four adjacent buildings in series

  • Elwardany, Hytham;Mosa, Beshoy;Khedr, M. Diaa Eldin;Seleemah, Ayman
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.153-166
    • /
    • 2022
  • Structural pounding due to strong seismic excitations can result in severe damage or even collapse of colliding structures. Many researchers focused on studying the mutual pounding between two adjacent structures while very few researches were concerned with the pounding of a series of structures. This paper aims to study the pounding effect on a series of four buildings having different natural frequencies. The paper also investigates the effect of different arrangements of the four buildings on their pounding response. For this, a mathematical model was constructed using Matlab code where, pounding was modeled using a contact force-based approach. A Non-Linear viscoelastic (Hertzdamp) contact element was used and activated only during the approach period of collision. The mathematical model was validated by comparing its prediction versus experimental results on three adjacent buildings. Then the model was used to study the pounding between four adjacent structures arranged in different sequences according to their natural frequencies. The results revealed that increasing the gap distance generally led to decrease the peak responses of the towers. Such response is somehow different from that predicted earlier by the authors for the case of three adjacent buildings. Moreover, the arrangement of towers has a significant effect on their pounding response. Significant difference between the natural frequencies of adjacent structures increases the pounding forces especially when the more flexible buildings are located at the outer edge of the series. The study points out the need for further researches on buildings in series to gain a better understanding of such complex phenomena.

Dynamic Behavior Analysis of a Bridge Considering Nonlinearity of R/C Piers under Bi-Directional Seismic Excitations (R/C 교각의 비선형성을 고려한 교량시스템의 2방향 지진거동분석)

  • 김상효;마호성;이상우;강정운
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.353-360
    • /
    • 2001
  • An analysis procedure of 2-dimensional bridge dynamics has been developed by using force-deformation model, which simulates the pier motion under biaxial bending due to the bi-directional input seismic excitations. A three-dimensional mechanical model is utilized, which can consider the other major phenomena such as pounding, rotation of the superstructure, abutment stiffness degradation, and motions of the foundation motions. The bi-directional dynamic behaviors of the bridge are then examined by investigating the relative displacements of each oscillator to the ground. It is found that the nonlinearity of the pier due to biaxial bending affects the pier motions, but the global bridge behaviors are greatly governed by the pounding phenomena and stiffness degradation of the abutment-backfill system. Especially, the relative displacement of the abutment system (A2) with movable supports to the ground is increased about 30% due to the abutment stiffness degradation.

  • PDF

Dynamic Characterisics of the Bridge Retrofitted by Restrainer under Seismic Excitations Considering Pounding Effects (충돌효과를 고려한 Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1999
  • An analysis model is developed to evaluate the dynamic responses of a bridge system under seismic excitations, in which pounding actions between girders are considered in addition to other phenomena such as nonlinear pier motion, rotational and translational motions of foundations. The model also considers the abutment and restrainers connecting adjacent girders to prevent the unseating failures. Using the developed model, the longitudinal dynamic behaviors of a bridge system are examined for various peak ground accelerations, and the effects of the applied restrainers are investigated. It is found that the restrainers reduce the relative displacement with the shorter clearance length as well as the higher stiffness of the restrainers for moderate excitations. However, in the region with strong excitations the restrainers may yield due to the large relative displacement. Therefore, the extension of support length in addition to restrainers may need to prevent the unseating failure more effectively.

  • PDF

Bearing Damage Analysis of Bridges Considering the Probabilistic Characteristics of Earthquake and Structural Properties (지진하중 및 교량구조물의 확률적 특성을 고려한 받침손상위험도 분석)

  • 김상효;마호성;이상우;김철환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.346-353
    • /
    • 2002
  • The risk of bearing failure is evaluated through the seismic response analysis of a bridge considering the probabilistic characteristics of structural properties such as the mass of superstructure, the stiffness of pier, and the translational and rotational stiffness of the foundation as well as seismic loadings during the bridge service lift. The effect of pounding between adjacent vibration units on the risk of bearing failure is also investigated. The probabilistic characteristics of structural properties are obtained by the Monte Carlo simulations based on the probabilistic characteristics of basic random variables included in the structural properties. From the simulation results, the failure probability of fixed bearings attached on the abutment is found to be much higher than those placed on the piers. It is also found that the pounding effect significantly increases the failure probability of bearings. In the simply supported bridges, the risk of bearing failure increases as the number of bridge spans increase. Therefore, the failure probability of fixed bearing due to the effects of pounding phenomena and the number of bridge spans should be considered in the seismic desist of bearings.

  • PDF

A study on preventing the fall of skew and curved bridge decks by using rubber bearings

  • Ijima, Katsushi;Obiya, Hiroyuki;Aramaki, Gunji;Kawasaki, Noriaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.347-362
    • /
    • 2001
  • The paper deals with preventing the collapse of by the means of supporting the bridges by rubber bearings and pedeck structures of skew and curved bridges during earthquakes, rmitting pounding between the decks and the abutments. Seismic response during pounding is characterized by various phenomena, such as the caging of bridge decks between abutments during an earthquake or decks popping out. These behaviors depend on only a small difference in seismic intensity. Regarding the global characteristics of a seismic response, smaller clearance between a deck and its abutments results in smaller impact damage of the abutments as well as lesser deformation of the rubber bearings. Similarly, smaller clearance between a deck and the side blocks results in smaller damage. The stiffnesses of the bearings and the stiffness ratio between them control the deck displacement. In short to medium length bridges, zero clearance between a deck and the abutments or the deck and the side blocks is the most effective way in preventing the deck from falling and limits the damage to the abutments or the side blocks.

Seismic Behavior Analysis of a Bridge Considering stiffness Degradation due to Abutment-Soil Interaction (교대-토체의 강성저하를 고려한 교량의 지진거공분석)

  • 김상효
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.357-366
    • /
    • 2000
  • Longitudinal dynamic behaviors of a bridge system under seismic excitations are examined with various magnitudes of peak ground accelerations. The stiffness degradation due to abutment-soil interaction is considered in the bridge model which may play the major role upon the global dynamic characteristics. The idealized mechanical model for the whole ridge system is proposed by adopting the multiple-degree-of-freedom system which can consider components such as pounding phenomena friction at the movable supports rotational and translational motions of foundations and the nonlinear pier motions. The abutment-soil interaction is simulated by utilizing the one degree-of-freedom system with nonlinear spring. The stiffness degradation of the abutment-soil system is found to increase the relative displacement under moderate seismic excitations.

  • PDF

Dynamic Behaviors of a Bridge under Seismic Excitations Considering Stiffness Degradation with Various Abutment-Soil Conditions (교대인접토체의 특성에 따른 강성저하를 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;경규혁;이상우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.347-354
    • /
    • 2000
  • The seismic behaviors of a bridge system with several simple spans are examined to see the effects of the longitudinal stiffness degradation due to abutment-soil interaction. The abutment-backfill system is modeled as one degree-of-freedom-system with nonlinear spring and linear damper. various soil-conditions surrounding the abutment such as loose sand, medium dense sand, and dense sand are considered in the bridge seismic analysis. The idealized mechanical model for the whole bridge system is modeled by adopting the multiple-degree-of-freedom system, which can consider components such as pounding phenomena, friction at the movable supports, rotational and translational motions of foundations, and the nonlinear pier motions. The stiffness of the abutment is found to be rapidly reduced at the beginning of the earthquakes, and to be converged to constant values shortly after the displacement approaches to the Predefined critical values. It is observed that the maximum relative distanced an maximum relative displacements are generally Increased as the relative density of a soil decreases As the peak ground acceleration increases, the response ratio of the case considering stiffness degradation to the case considering constant stiffness decreases.

  • PDF

Effects of Restrainer upon Bridge Motions with Poundings and frictions under Seismic Excitations (지진시 층돌 및 마찰을 고려한 교량거동에 미치는 Restrainer의 보강효과)

  • 김상효;마호성;이상우;원정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.291-300
    • /
    • 1999
  • An idealized analytical model is proposed to estimate the effects of restrainer upon global response behaviors of a bridge system under seismic excitations. Pounding actions between adjacent vibration units and friction at movable supports are introduced in addition to other phenomena such as nonlinear behaviors of pier, motions of the foundation and abutment to achieve the better prediction of the bridge motion. The applied restrainer is assumed to be a dead-band system, which has the force clearance and the linear-elastic force. Using the proposed model, the dynamic characteristics of a bridge system retrofitted by restrainers is examined, and the effects of stiffness and clearance length of restrainer is also investigated. The main effect of the application of restrainers is found to reduce the relative displacements and the trend becomes greater with the shorter clearance length except between pier units. It is found that the relative displacements between abutment and adjacent pier units are decreased as the stiffness of restrainer increases, but almost independent upon the stiffness increments of restrainer. However, the relative displacements between pier units tend to be increased due to the applications of the restrainers.

  • PDF