• Title/Summary/Keyword: pounding occurrence

Search Result 2, Processing Time 0.017 seconds

A reliability-based fragility assessment method for seismic pounding between nonlinear buildings

  • Liu, Pei;Zhu, Hai-Xin;Fan, Peng-Peng;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.19-35
    • /
    • 2021
  • Existing methods to estimate the probability of seismic pounding occurrence of adjacent buildings do not account for nonlinear behavior or only apply to simple lumped mass systems. The present study proposes an efficient method based on subset simulation for fragility and risk assessment of seismic pounding occurrence between nonlinear adjacent buildings neglecting pounding effects with application to finite element models. The proposed method is first applied to adjacent buildings modeled as elastoplastic systems with substantially different dynamic properties for different structural parameters. Seismic pounding fragility and risk of adjacent frame structures with different floor levels is then assessed, paying special attention to modeling the non-linear material behavior in finite element models. Difference in natural periods and impact location are identified to affect the pounding fragility simultaneously. The reliability levels of the minimum code-specified separation distances are also determined. In addition, the incremental dynamic analysis method is extended to assess seismic pounding fragility of the adjacent frame structures, resulting in higher fragility estimates for separation distances larger than the minimum code-specified ones in comparison with the proposed method.

An investigation into adequacy of separation gap to preclude earthquake-induced pounding

  • Yazan Jaradat;Pejman Sobhi and Harry Far
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.29-48
    • /
    • 2023
  • Pounding happens when contiguous structures with differing heights vibrate out of line caused by a seismic activity. The situation is aggravated due to the insufficient separation gap between the structures which can lead to the crashing of the buildings or total collapse of an edifice. Countries around the world have compiled building standards to address the pounding issue. One of the strategies recommended is the introduction of the separation gap between structures. AS1170.4-2007 is an Australian standard that requires 1% of the building height as a minimum separation gap between buildings to preclude pounding. This article presents experimental and numerical tests to determine the adequacy of this specification to prevent the occurrence of seismic pounding between steel frame structures under near-field and far-field earthquakes. The results indicated that the recommended minimum separation gap based on the Australian Standard is inaccurate if low-rise structure in a coupled case is utilised under both near and far field earthquakes. The standard is adequate if a tall building is involved but only when a far-field earthquake happens. The research likewise presents results derived by using the ABS and SRSS methods.