• Title/Summary/Keyword: potentiostatic

Search Result 132, Processing Time 0.03 seconds

Investigation on optimum protection potential of Al-Mg alloy for small ship application in sea water solution (소형선박용 Al-Mg 합금의 해양환경 중 최적 방식 전위결정에 관한 연구)

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il;Ko, Jae-Yong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.23-24
    • /
    • 2005
  • This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a passive film. In a potentiostatic experiment, the current density after 1200 sec in the potential range of $-0.68{\sim}-1.5 V$ was low. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.5 to -0.7 V(SSCE).

  • PDF

Effects of rotation speed and time in potentiostatic experiment in seawater for 5083-H116 Al alloy

  • Lee, Seung-Jun;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.974-980
    • /
    • 2014
  • Aluminum acts as sacrificial anode and corrosion protection with Al2O3 formation. If the same current on material for Al ships with steel ships supplies, the more hydrogen would be occurred, that result is bring about over-protection. For this reason, the damage by hydrogen embrittlement leads to the serious accident. In this study, we evaluate electrochemical behavior with rotation speed of 5083-H116 Al alloy material for Al ship in seawater. To examine the electrochemical characteristics with rotation speed and its effects on performance, experiments were conducted at four rotation speed. Results of experiments, the corrosion current density and damage were increased by applying the rotation speed compared to static state.

Electrochemical Potentiostatic Activation & Its Application for Enhancing blue LED Efficiency

  • Kim, Bong-Jun;Kim, Hak-Jun;Lee, Yeong-Gon;Baek, Gwang-Seon;Lee, Jun-Gi;Kim, Jin-Hyeok;Sadasivam, Karthikeyan Giri
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.56.1-56.1
    • /
    • 2010
  • A novel electrochemical potentiostatic method has been examined in order to enhance the hole concentration of p-type GaN thin films using KOH and HCl electrolyte. The hole concentration was increased more than 2 times by the electric voltge apply with the mobility of $10{\sim}12cm^2/V.s$. At optimum condition of 3V apply, hole concentration was enhanced more than reference sample from $1.7{\times}10^{-17}cm^{-3}$ to $4.1{\times}10^{-17}cm^{-3}$. Application of this activation method to blue-LED fabrication improved optical output from 18.4mW to 20.6mW, that is ~12% increase. SIMS analysis indicates that nearly 70% of hydrogen atoms could be removed by this method.

  • PDF

Effect of Polyaniline Film by Electro-synthesis on Corrosion Resistance of Steel Sheets in the Aqueous Solution of Sodium Chloride (NaCl 수용액내에서 강판의 내식성에 미치는 전해합성 폴리아닐린 피막의 영향)

  • Yoon, J.M.;Kim, Y.G.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.625-630
    • /
    • 2003
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as Polyaniline(PANI). Polyaniline films were electrosynthesized by oxidation of aniline on cold rolled and weathering sheets using the potentiostatic mode from an aqueous oxalic acid medium. Potentiodynamic polarization curves were obtained for cold rolled and weathering sheets in the aqueous solution of 3% sodium chloride. The structure and properties of polyaniline film were elucidated using SEM, DSC, SST. A high corrosion resistance of polyaniline films were observed with a gain of the corrosion potential around 600-900 mV positive in the substrate covered with polyaniline than in the case without it.

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode (일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.319-324
    • /
    • 2020
  • Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

Analysis of the grain boundary precipitates in stainless steel by potentiostatic etching dissolution method (정전위 전해에칭법에 의한 스테인레스 강의 입계 석출물 분석)

  • Park, Shin Hwa;An, Byug Ryang;Hong, Ki Jung;Lee, Do Hyung
    • Analytical Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 1993
  • The potentiostatic etching dissolution method, which had been used for the quantification of precipitates in steel, was applied to investigate the origin of cracks occurred in 304 stainless steel during processing. The morphology of crack propagation was observed by SEM. EDS and EPMA were used for the analysis of chemical composition of large precipitates on the grain boundary. The crystal structure of these large precipitates was determined by X-ray diffraction and electron diffraction. In both a stainless steel plate and a wire, the crack propagated along the grain boundary. Large precipitates on the grain boundary were identified to be $M_2C$ and $M_{23}C_6$. Potentiostatic etching dissolution method was found to be appropriate to the sample preparation for the analysis of precipitates in stainless steel.

  • PDF

The Protection Potential Decision by Electrochemical Experiment of Al-Mg-Si Alloy for Ship in Seawater (해수용액에서 선박용 Al-Mg-Si 합금의 전기화학적 실험에 의한 방식전위 결정)

  • Jeong, S.O.;Park, J.C.;Han, M.S.;Kim, S.J.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 2010
  • The many vessels are built with FRP(Fiber-Reinforced Plastic) material for small boats and medium vessels. However, FRP is impossible to be used for recyclable material owing to environmental problems and causes large proportion of collision accidents because radar reflection wave is so weak that large vessels could not detect FRP ships during the sailing. Hence, Al alloy comes into the spotlight to solve these kinds of problems as a new-material for next generation instead of FRP. Al alloy ships are getting widely introduced for fish and leisure boats to save fuel consumption due to lightweight. In this study, it was selected 6061-T6 Al alloy which are mainly used for Al-ships and carried out various electrochemical experiment such as potential, anodic/cathodic polarization, Tafel analysis, potentiostatic experiment and surface morphologies observation after potentiostatic experiment for 1200 sec by using the SEM equipment to evaluate optimum corrosion protection potential in sea water. It is concluded that the optimum corrosion protection potential range is -1.4 V ~ -0.7 V(Ag/AgCl) for 6061-T6 Al alloy, in the case of application of ICCP(Impressed current cathodic protection), which was shown the lowest current density at the electrochemical experiment and good specimen surface morphologies after potentiostatic experiment for Al-Mg-Si(6061-T6) Al alloy in seawater environment.