• Title/Summary/Keyword: potential-flow models

Search Result 113, Processing Time 0.041 seconds

Quantitative Assessment of Coastal Groundwater Vulnerability to Seawater Intrusion using Density-dependent Groundwater Flow Model (분산형 해수침투 모델을 이용한 양적 지표 기반의 해안지하수 취약성 평가연구)

  • Chang, Sun Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.95-105
    • /
    • 2021
  • Extensive groundwater abstraction has been recognized as one of the major challenges in management of coastal groundwater. The purpose of this study was to assess potential changes of groundwater distribution of northeastern Jeju Island over 10-year duration, where brackish water have been actively developed. To quantitatively estimate the coastal groundwater resources, numerical simulations using three-dimensional finite-difference density-dependent flow models were performed to describe spatial distribution of the groundwater in the aquifer under various pumping and recharge scenarios. The simulation results showed different spatial distribution of freshwater, brackish, and saline groundwater at varying seawater concentration from 10 to 90%. Volumetric analysis was also performed using three-dimensional concentration distribution of groundwater to calculate the volume of fresh, brackish, and saline groundwater below sea level. Based on the volumetric analysis, a quantitative analysis of future seawater intrusion vulnerability was performed using the volume-based vulnerability index adopted from the existing analytical approaches. The result showed that decrease in recharge can exacerbate vulnerability of coastal groundwater resources by inducing broader saline area as well as increasing brackish water volume of unconfined aquifers.

Hydrologic Performance Characteristics Variation of Small Scale Hydro Power Plant with Variation of Inflow (유입량변화에 의한 소수력발전소의 수문학적 성능특성 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.393-398
    • /
    • 2010
  • The variation of inflow at stream and hydrologic performance for small scale hydro power (SSHP) plants due to variation of inflow have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for SSHP plants is established. Monthly inflow data measured at Andong dam for 32 years were analyzed. The existing SSHP plant located in upstream of Andong dam was selected and analyzed hydrologic performance characteristics. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam and the existing SSHP plant. Inflow and ideal hydro power potential had increased greatly in recent years, however, these did not lead annual energy production increment of existing SSHP plant. As a results, it was found that the models developed in this study can be used to predict the primary design specifications and inflow of SSHP plants effectively.

Optical imaging of epileptic activity and epilepsy treatments in neocortex

  • Suh, Min-Ah
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.427-428
    • /
    • 2009
  • Optical imaging offers excellent spatio-temporal sensitivity that is unparalleled by any other perfusion based imaging techniques. We used in vivo optical recording of intrinsic signals (ORIS) to map neurovascular hemodynamics of perfusion, oximetry and membrane potential during epileptic events in rat and mouse neocortex. Studies of hemodynamic changes with ORIS alone were also performed in human. Laboratory studies in rodent epilepsy models have demonstrated a persistent increase in deoxygenated hemoglobin (Hbr) and a decrease in tissue oxygenation during interictal spikes and ictal events. This "epileptic dip", like the "initial dip" recorded during normal sensory processing, implies that the enormous rise in cerebral blood flow (CBF) is inadequate to meet the increased metabolic demands associated with synchronized epileptic activity. These findings are critically important to the interpretation of the perfusion-based imaging studies, such as fMRI. In addition, we visualized the effect of direct cortical electrical stimulation, an alterative epilepsy treatment. The optical data following direct cortical electrical stimulation showed that hemodynamic signals are sensitive to different electrical stimulation parameters. Furthermore, our recent data demonstrated that the application of unilateral electrical stimulation is able to elicit bilateral hemodynamic responses in rat neocortex.

  • PDF

Hydrodynamic Hull Form Design Using an Optimization Technique

  • Park, Dong-Woo;Choi, Hee-Jong
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • A design procedure for a ship with minimum resistance had been developed using a numerical optimization method called SQP (Sequential Quadratic Programming) combined with computational fluid dynamics (CFD) technique. The frictional resistance coefficient was estimated by the ITTC 1957 model-ship correlation line formula and the wave-making resistance coefficient was evaluated by the potential-flow panel method with the nonlinear free surface boundary conditions. The geometry of the hull surface was represented and modified by B-spline surface modeling technique during the optimization process. The Series 60 ($C_B$=0.60) hull was selected as a parent hull to obtain an optimized hull that produces minimum resistance. The models of the parent and optimized hull forms were tested at calm water condition in order to demonstrate the validity of the proposed methodolgy.

Advances in modelling the mechanisms and rheology of electrorheological fluids

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.169-195
    • /
    • 1999
  • An electrorheological fluid (ERF) is typically a suspension of semi-conducting solid particles dispersed in an insulating carrier fluid, and shows a dramatic change in rheological properties when an external electric field is applied. This rapid and reversible change in flow properties has potential application in many electronically controlled mechanical devices, but the development of efficient devices and optimal materials for ERF is still hindered by incomplete understanding of the fundamental physical mechanisms involved. In recent years there have been considerable advances In relating microstructural models to the rheological behaviour, and these will form the basis of this review. Results of the theoretical calculations and simulations will be compared to the key experimental evidence available. An overview of the fundamental physical concepts behind electrorheological fluid behaviour will also be presented.

  • PDF

Wave Excitations on a Body in a Bifurcated Three-Dimensional Channel

  • Cho Song Pyo;Kyoung Jo hyun;Bai Kwang June
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.191-192
    • /
    • 2003
  • A numerical method for a wave diffraction problem in three-dimensional channels is developed. The physical models are various shapes of channel connected to the open sea. When a ship or an offshore structure is moored in various configurations of channel connected to an open sea, the prediction of the hydrodynamic force exerting on the moored ship could be important for the prediction of its motion. It is assumed that the fluid is inviscid and incompressible and its motion is irrotational. From the continuity equation, the Laplace equation can be obtained as the governing equation. The surface tension at free surface is neglected, and wave amplitude is assumed to be small compared to the wave length. Then the free surface condition can be linearized. The numerical method used here is the localized finite element method based on a variational formulation

  • PDF

Research on theoretical optimization and experimental verification of minimum resistance hull form based on Rankine source method

  • Zhang, Bao-Ji;Zhang, Zhu-Xin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.785-794
    • /
    • 2015
  • To obtain low resistance and high efficiency energy-saving ship, minimum total resistance hull form design method is studied based on potential flow theory of wave-making resistance and considering the effects of tail viscous separation. With the sum of wave resistance and viscous resistance as objective functions and the parameters of B-Spline function as design variables, mathematical models are built using Nonlinear Programming Method (NLP) ensuring the basic limit of displacement and considering rear viscous separation. We develop ship lines optimization procedures with intellectual property rights. Series60 is used as parent ship in optimization design to obtain improved ship (Series60-1) theoretically. Then drag tests for the improved ship (Series60-1) is made to get the actual minimum total resistance hull form.

Computation of the inviscid drift force caused by nonlinear waves on a submerged circular cylinder

  • Koh, Hyeok-Jun;Cho, Il-Hyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.201-207
    • /
    • 2011
  • In this paper, we focused on computing the higher-harmonic components of the transmitted wave passing over a submerged circular cylinder to show that it is causing a horizontal negative drift force. As numerical models, a circular cylinder held fixed under free surface in deep water is adopted. As the submergence of a circular cylinder decreases and the incident wavelength becomes longer, the higher-harmonic components of the transmitted wave starts to increase. An increase of the higher-harmonic components of the transmitted wave makes the horizontal drift force be negative. It is also found that the higher-harmonic amplitudes averaged over the transmitted wave region become larger with the increase of wave steepness and wavelength as well as the decrease of submergence depth.

Development of BPR Functions with Truck Traffic Impacts for Network Assignment (노선배정시 트럭 교통량을 고려한 BPR 함수 개발)

  • Yun, Seong-Soon;Yun, Dae-Sic
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.117-134
    • /
    • 2004
  • Truck traffic accounts for a substantial fraction of the traffic stream in many regions and is often the source of localized traffic congestion, potential parking and safety problems. Truck trips tend to be ignored or treated superficially in travel demand models. It reduces the effectiveness and accuracy of travel demand forecasting and may result in misguided transportation policy and project decisions. This paper presents the development of speed-flow relationships with truck impacts based on CORSIM simulation results in order to enhance travel demand model by incorporating truck trips. The traditional BPR(Bureau of Public Road) function representing the speed-flow relationships for roadway facilities is modified to specifically include the impacts of truck traffics. A number of new speed-flow functions have been developed based on CORSIM simulation results for freeways and urban arterials.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.