• Title/Summary/Keyword: potential-flow models

Search Result 112, Processing Time 0.039 seconds

HIGH-ORDER POTENTIAL FLOW MODELS FOR HYDRODYNAMIC UNSTABLE INTERFACE

  • Sohn, Sung-Ik
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.225-234
    • /
    • 2012
  • We present two high-order potential flow models for the evolution of the interface in the Rayleigh-Taylor instability in two dimensions. One is the source-flow model and the other is the Layzer-type model which is based on an analytic potential. The late-time asymptotic solution of the source-flow model for arbitrary density jump is obtained. The asymptotic bubble curvature is found to be independent to the density jump of the fluids. We also give the time-evolution solutions of the two models by integrating equations numerically. We show that the two high-order models give more accurate solutions for the bubble evolution than their low-order models, but the solution of the source-flow model agrees much better with the numerical solution than the Layzer model.

Two-Phase Flows and Boiling Heat Transfer in Microchannels

  • Oh, Jong-Taek;Ardiyansyah, Ardiyansyah
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.51-63
    • /
    • 2008
  • A study of literatures on flow boiling heat transfer and two-phase flows inside microchannels is summarized. The potential applications, fabrication method and efforts to determine certain dimensional threshold for microchannels classifications are discussed. For the last two decades, numerous two-phase flow and heat transfer models for microchannels have been developed; many of them were derived from empirical models originally applied for conventional channels. Those models are discussed here along with a brief review on recent development of theoretical and phenomenological-based models for microchannels. This study is devoted to provide a review of important issues on flow boiling heat transfer and two-phase flows inside microchannels, including two-phase flow patterns, boiling heat transfer mechanism and correlations developments, pressure drop and prediction methods, and critical heat flux.

Passenger Flow Analysis at Transit Connecting Path (철도 환승 연결로에서의 여객 유동 해석)

  • Nam, Seongwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.415-420
    • /
    • 2020
  • Crowd flows occur in metropolitan railway transit stations, terminals, multiple buildings, and stadiums and are important in ensuring the safety as well as smooth flow of pedestrians in these facilities. In this study, the author developed a new computational analysis method for crowd flow dynamics and applied it to models of transit connecting paths. Using the analysis method, the potential value of the exit was assigned the smallest value, and the potential value of the surrounding grids gradually increased to form the overall potential map. A pathline map was then constructed by determining the direction vector from the grid with large potential value to the grid and small potential. These pathlines indicate basic routes of passenger flow. In all models of the analysis object, the pedestrians did not move to the first predicted shortest path but instead moved using alternative paths that changed depending on the situation. Even in bottlenecks in which pedestrians in both directions encountered each other, walking became much smoother if the entry time difference was dispersed. The results of the analysis show that a method for reducing congestion could be developed through software analysis such as passenger flow analysis without requiring hardware improvement work at the railway station.

Design Parameters of Small Hydro Power Sites for River Systems(II) (소수력발전입지의 수계별 설계변수 특성(II))

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.42-47
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study show that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites had some difference between the river systems. Especially, the specific design flow and specific output of SHP sites located on North Han river and Nakdong river systems had large difference compared with other river systems.

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

Effects of Gas-surface Interaction Models on Spacecraft Aerodynamics

  • Khlopkov, Yuri Ivanovich;Chernyshev, Sergey Leonidovich;Myint, Zay Yar Myo;Khlopkov, Anton Yurievich
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • The influence of boundary condition of the bodies with gas flows is one of the most important problems in high-altitude aerodynamics. In this paper presents the results of the calculation of aerodynamic characteristics of aerospace vehicle using Monte-Carlo method based on three different gas-surface interaction models - Maxwell model, Cercignani-Lampis-Lord (CLL) model and Lennard-Jones (LJ) potential. These models are very sensitive for force and moment coefficients of aerospace vehicle in the hypersonic free molecular flow. The models, method and results can be used for new generation aerospace vehicle design.

A comparative assessment of bagging ensemble models for modeling concrete slump flow

  • Aydogmus, Hacer Yumurtaci;Erdal, Halil Ibrahim;Karakurt, Onur;Namli, Ersin;Turkan, Yusuf S.;Erdal, Hamit
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.741-757
    • /
    • 2015
  • In the last decade, several modeling approaches have been proposed and applied to estimate the high-performance concrete (HPC) slump flow. While HPC is a highly complex material, modeling its behavior is a very difficult issue. Thus, the selection and application of proper modeling methods remain therefore a crucial task. Like many other applications, HPC slump flow prediction suffers from noise which negatively affects the prediction accuracy and increases the variance. In the recent years, ensemble learning methods have introduced to optimize the prediction accuracy and reduce the prediction error. This study investigates the potential usage of bagging (Bag), which is among the most popular ensemble learning methods, in building ensemble models. Four well-known artificial intelligence models (i.e., classification and regression trees CART, support vector machines SVM, multilayer perceptron MLP and radial basis function neural networks RBF) are deployed as base learner. As a result of this study, bagging ensemble models (i.e., Bag-SVM, Bag-RT, Bag-MLP and Bag-RBF) are found superior to their base learners (i.e., SVM, CART, MLP and RBF) and bagging could noticeable optimize prediction accuracy and reduce the prediction error of proposed predictive models.

Comparison of Experimental and Simulation Results for Flow Characteristics around Jet Impingement/Effusion Hole in Concave Hemispherical Surface (오목한 반구면의 Jet Impingement/Effusion Hole 주변 유동 특성에 대한 실험과 시뮬레이션의 비교)

  • Youn, Sungji;Seo, Heerim;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.28-37
    • /
    • 2022
  • Flow characteristics of jet impingement over concave hemispherical surface with effusion cooling holes is relatively more complex than that of a flat surface, so the experimental validation for computational fluid dynamics (CFD) results is important. In this study, experimental results were compared with simulation results obtained by assuming different turbulence models. The vortex was observed in the region between the central jets where the recirculation structure appeared. The different patterns of vorticity distributions were observed for each turbulence models due to different interaction of the injected jet flow. Among them, the transition k-kl-ω model predicted similarly not only the jet potential core region with higher velocity, but also the recirculation region between the central jets. From the validation, it may be helpful to accurately predict heat and mass transfer in jet impingement/effusion hole system.

Characteristics of Small Hydro Power Resources for River System (수계별 소수력자원의 특성)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.1-193.1
    • /
    • 2010
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

Characteristic Analysis of Small Hydro Power Resources for River System (수계별 소수력자원의 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.235-240
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong darn. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF