• Title/Summary/Keyword: potential model

Search Result 6,744, Processing Time 0.037 seconds

Characteristic Analysis elf Large Grounding system by Using Reduced Scale Model Method (축소모델 기법을 이용한 대규모 접지계의 특성분석)

  • 장석훈;이재복;명성호;조연규;김점식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.162-167
    • /
    • 2004
  • The scale model grounding systems to study the behavior of grounding system in uniform soils have been designed and fabricated. Constructional details and instrumentation have been discussed. To verify the accuracy of the results obtained from the experimental tests, they have been compared with computer calculation results. Also, in order to assess the effectiveness of bonding two grounding systems, grounding grid conductors which were downsized as a scale factor of 100:1 were analyzed by using the scale model method. A profile of GPR(Grounding Potential Rise) of each case was measured. The scale model grounding system presented in this paper can be valuable tool to analyze the ground potential profile and ground resistance of practical grounding system.

Practical Construction of Tsunami Inundation Map Corresponding to Disaster Forecast/Warning Systems (지진해일 예경보에 따른 범람도의 실용적 작성)

  • Jeon, Young-Joon;Choi, Jun-Woo;Yoon, Sung-Bum
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.775-778
    • /
    • 2008
  • In general, forecast tsunami heights announced for tsunami warning are computed by using a linear tsunami model with coarse grids which leads the underestimation of inundation area. Thus, an accurate tsunami inundation map corresponding to the forecast tsunami height is indispensible for an emergency evacuation plan. A practical way to construct a relatively accurate tsunami inundation map was proposed in this study for the quantitative forecast of inundation area. This procedure can be introduced as in the followings: The fault dislocations of potential tsunami sources generating a specific tsunami height near an interested area are found by using a linear tsunami model. Based on these fault dislocations, maximum inundation envelops of the interested area are computed and illustrated by using nonlinear inundation numerical model. In this study, the tsunami inundation map for Imwon area was constructed according to 11 potential tsunami sources, and the validity of this process was examined.

  • PDF

Compact Current Model of Single-Gate/Double-Gate Tunneling Field-Effect Transistors

  • Yu, Yun Seop;Najam, Faraz
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2014-2020
    • /
    • 2017
  • A compact current model applicable to both single-gate (SG) and double-gate (DG) tunneling field-effect transistors (TFETs) is presented. The model is based on Kane's band-to-band tunneling (BTBT) model. In this model, the well-known and previously-reported quasi-2-D solution of Poisson's equation is used for the surface potential and length of the tunneling path in the tunneling region. An analytical tunneling current expression is derived from expressions of derivatives of local electric field and surface potential with respect to tunneling direction. The previously reported correction factor with three fitting parameters, compensating for superlinear onset and saturation current with drain voltage, is used. Simulation results of the proposed TFET model are compared with those from a technology computer-aided-design (TCAD) simulator, and good agreement in all operational bias is demonstrated. The proposed SG/DG-TFET model is developed with Verilog-A for circuit simulation. A TFET inverter is simulated with the Verilog-A SG/DG-TFET model in the circuit simulator; the model exhibits typical inverter characteristics, thereby confirming its effectiveness.

Comparing Surplus Production Models for Selecting Effective Stock Assessment Model: Analyzing Potential Yield of East Sea, Republic of Korea (효과적인 자원평가모델 선정을 위한 잉여생산량모델의 비교 분석: 동해 생태계의 잠재생산량 분석을 대상으로)

  • Choi, Min-Je;Kim, Do-Hoon
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.183-191
    • /
    • 2019
  • This study sought to find which model is most appropriate for estimating potential yield in the East Sea, Republic of Korea. For comparison purposes, the Process-error model, ASPIC model, Maximum entropy model, Observation-error model, and Bayesian state-space model were applied using data from catch amounts and total efforts of the whole catchable fishes in the East Sea. Results showed that the Bayesian state-space model was estimated to be the most reliable among the models. Potential yield of catchable species was estimated to be 227,858 tons per year. In addition, it was analyzed that the amount of fishery resources in 2016 was about 63% of the biomass that enables a fish stock to deliver the maximum sustainable yield.

Local Structure Invariant Potential for InxGa1-xAs Semiconductor Alloys

  • Sim, Eun-Ji;Han, Min-Woo;Beckers, Joost;De Leeuw, Simon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.857-862
    • /
    • 2009
  • We model lattice-mismatched group III-V semiconductor $In_{x}Ga_{1-x}$ alloys with the three-parameter anharmonic Kirkwood-Keating potential, which includes realistic distortion effect by introducing anharmonicity. Although the potential parameters were determined based on optical properties of the binary parent alloys InAs and GaAs, simulated dielectric functions, reflectance, and Raman spectra of alloys agree excellently with experimental data for any arbitrary atomic composition. For a wide range of atomic composition, InAs- and GaAs-bond retain their respective properties of binary parent crystals despite lattice and charge mismatch. It implies that use of the anharmonic Kirkwood-Keating potential may provide an optimal model system to investigate diverse and unique optical properties of quantum dot heterostructures by circumventing potential parameter searches for particular local structures.

Analysis on Thermal Boundary Resistance at the Interfaces in Superlattices by Using the Molecular Dynamics (분자동역학법을 이용한 초격자 내부의 경계면 열저항의 해석)

  • Choi, Soon-Ho;lee, Jung-Hye;Choi, Hyun-Kue;Yoon, Seok-Hun;Oh, Cheol;Kim, Myoung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1382-1387
    • /
    • 2004
  • From the viewpoint of a macro state, there is no thermal boundary resistance (TBR) at an interface if both surfaces at an interface are perfectly contacted. However, recent molecular dynamics (MD) studies reported that there still exists the TDR at the interface in an ideal epitaxial superlttice. Our previous studies suggested the model to predict the TBR not only quantitatively also qualitatively in superlattices. The suggested model was based on the classical theory of a wave reflection, and provided highly satisfactory results for an engineering purpose. However, it was not the complete model because our previous model was derived by considering only the effects from a mass ratio and a potential ratio of two species. The interaction of two species presented by the Lennard-Jones (L-J) potential is governed by the mutual ratio of the masses, the potential well depths, and the diameters. In this study, we performed the preliminary simulations to investigate the effect resulting from the diameter ratio of two species for the completion of our model and confirmed that it was also a ruling factor to the TBR at an interface in superlattices.

  • PDF

Multi-potential capacity for reinforced concrete members under pure torsion

  • Ju, Hyunjin;Han, Sun-Jin;Kim, Kang Su;Strauss, Alfred;Wu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.401-414
    • /
    • 2020
  • Unlike the existing truss models for shear and torsion analysis, in this study, the torsional capacities of reinforced concrete (RC) members were estimated by introducing multi-potential capacity criteria that considered the aggregate interlock, concrete crushing, and spalling of concrete cover. The smeared truss model based on the fixed-angle theory was utilized to obtain the torsional behavior of reinforced concrete member, and the multi-potential capacity criteria were then applied to draw the capacity of the member. In addition, to avoid any iterative calculation in the existing torsional behavior model, a simple strength model was suggested that considers key variables, such as the effective thickness of torsional member, principal stress angle, and strain effect that reduces the resistance of concrete due to large longitudinal tensile strain. The proposed multi-potential capacity concept and the simple strength model were verified by comparing with test results collected from the literature. The study found that the multi-potential capacity could estimate in a rational manner not only the torsional strength but also the failure mode of RC members subjected to torsional moment, by reflecting the reinforcing index in both transverse and longitudinal directions, as well as the sectional and material properties of RC members.

ANALYTICAL AND NUMERICAL STUDY OF MODE INTERACTIONS IN SHOCK-INDUCED INTERFACIAL INSTABILITY

  • Sohn, Sung-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.1
    • /
    • pp.155-172
    • /
    • 2000
  • Mode interactions at Unstable fluid interfaces induced by a shock wave (Richtmyer-Meshkov Instability) are studied both analytically and numerically. The analytical approach is based on a potential flow model with source singularities in incompressible fluids of infinite density ratio. The potential flow model shows that a single bubble has a decaying growth rates at late time and an asymptotic constant radius. Bubble interactions, bubbles of different radii propagates with different velocities and the leading bubbles grow in size at the expense of their neighboring bubbles, are predicted by the potential flow model. This phenomenon is validated by full numerical simulations of the Richtmyer-Meshkov instability in compressible fluids for initial multi-frequency perturbations on the unstable interface.

  • PDF

Defect Model for the Oxygen Potential of Urania doped wit Gadolinia (가돌리니아 첨가 이산화우라늄의 점결함 모델에 의한 산소포텐샬 연구)

  • Park, Kwang-Heon;Kim, Jang-Wook
    • Nuclear Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.321-327
    • /
    • 1991
  • A defect model e)[plaining the oxygen potential of Gadolinia doped urania based on the defect structure of pure urania has been developed. Gd-dopants are assumed to stay in the cation sites pushing away nearby oxygen interstitials reducing the number of interstitial sites. Gd-dopants also form dopant-vacancy clusters in the abundance of oxygen vacancies. This model explains the discontinuous change of the oxygen potential at O/M= as well as the increase of the potential with the dopant concentration.

  • PDF

Three-dimensional Spatiotemporal Accessible Solitons in a PT-symmetric Potential

  • Zhong, Wei-Ping;Belic, Milivoj R.;Huang, Tingwen
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.425-431
    • /
    • 2012
  • Utilizing the three-dimensional Snyder-Mitchell model with a PT-symmetric potential, we study the influence of PT symmetry on beam propagation in strongly nonlocal nonlinear media. The complex Coulomb potential is used as the PT-symmetric potential. A localized spatiotemporal accessible soliton solution of the model is obtained. Specific values of the modulation depth for different soliton parameters are discussed. Our results reveal that in these media the localized solitons can exist in various shapes, such as single-layer and multi-layer disk-shaped structures, as well as vortex-ring and necklace patterns.