• Title/Summary/Keyword: potential evapotranspiration

Search Result 148, Processing Time 0.022 seconds

The Effect of Cattle Slurry on N-Dynamics and $NO_3$ Leaching in Pasture Mixtures (목초 생산성과 액상분뇨 시용이 토양의 질소동태와 $NO_3$ 용탈에 미치는 영향)

  • 류종원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.1
    • /
    • pp.43-50
    • /
    • 1997
  • The aim of the study is to describe the fate and transformation of nitrogen in grassland ecosystems. Field experiments were conducted using sandyloam soil under variabling conditions: Zen, fertilization, reduced slurry application(l20kg N $ha^{-1}\;yr^{-1}$), usual sluny application (240 kg N $ha^{-1}\;yr^{-1}$).Soil water samples were gathered with 120cm ceramic cups with initial pressure of 0.5 bar. Samples were collected twice a month and analysed for NO, colormetrically. Percolation was calculated as the difference between precipitation and potential evapotranspiration, and leaching as the product of percolation and nitrate content of the water h m the ceramic cups. The N$H_4$-N content in soil had no significant effect on slurry application, but high slurry application on grassland resulted in high N$O_3$-N content in soil. The NO, concentration in soil water was remarkably variable during the year. The average N$O_3$, concentration during experiment became the lowest(8.5 mg/e ) without slurry application and highest with 240kOa cattle sluny(25.3 mg4 ). For each of the three different amounts of cattle sluny applied (0, 120, and 240kOa), the amount of N$O_3$-N leached per year were 12, 23 and 29kg/ha respectively. On grassland under the climatic conditions of Allgau showed enormous nitrate leaching, which has a p a t potential of polluting the ground water. The high pool of mineral N in the soil are the source for N$O_3$ leaching. The leaching of N$O_3$ cannot be avoided completely, but minimized by optimizing N fertilization rate.

  • PDF

Parameter Regionalization of Hargreaves Equation Based on Climatological Characteristics in Korea (우리나라 기후특성을 고려한 Hargreaves 공식의 매개변수 지역화)

  • Moon, Jang Won;Jung, Chung Gil;Lee, Dong Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.933-946
    • /
    • 2013
  • The quantitative analysis of evapotranspiration (ET) is a key component in hydrological studies and the establishment of water resources planning. Generally, the quantitative analysis of ET is performed by the estimation method of potential or reference ET based on meteorological factors such as air temperature, wind speed, etc. Hargreaves equation is one of empirical methods for reference ET using air temperature data. In this study, in order to estimate more exact reference ET considering climatological characteristics in Korea, parameter regionalization of Hargreaves equation is carried out. Firstly, modified Hargreaves equation is presented after the analysis of the relationship between solar radiation and temperature. Secondly, parameter ($K_{ET}$) optimization of Hargreaves equation is performed using Penman-Monteith method and modified equation at 71 weather stations. Lastly, the equation for calculating $K_{ET}$ using temperature data is proposed and verified. As a result, reference ET from original Hargreaves equation is overestimated or underestimated compared with Penman-Monteith method. But modified equation in this study is more accurate in the climatic conditions of Korea. In addition, the applicability of the equation between $K_{ET}$ and temperature is confirmed.

Analysis for the Regional Characteristic of Climatic Aridity Condition in May (5월 기후 건조현상의 지역별 특성 분석)

  • Rim, Chang-Soo;Kim, Seong-Yeop
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.613-627
    • /
    • 2013
  • In this study, to understand the May aridity condition of each region for the year of the worst drought on record in each duration (1-, 3-, 6-, 12-, 24 months), monthly climate data recorded from 1973 to 2006 at 53 climatological stations in South Korea were used to estimate the FAO Penman-Monteith reference potential evapotranspiration (RET). Monthly precipitation and RET were used to estimate P/RET as aridity index and variation index (VI) of P/RET, and these indexes are compared with SPI (Standard Precipitation Index). Fifty three climatological stations were grouped into 20 regions, so that May aridity conditions of 20 regions were studied. Furthermore, regional trend of May aridity index was studied by applying Mann-Kendall trend analysis, Spearman rank test, and Sen's slope estimator. The study results show that variation index (VI) of P/RET and SPI have close correlation. Throughout the country, as the duration is shorter, May aridity was more severe. In case of 3-month and 6-month duration, most of region show significant or non-significant decreasing trend of aridity index. However, no region show significant decreasing trend of aridity index in case of 12-month and 24-month duration.

Actual Evapotranspiration of Sesame Crop Cultured With and Without Transparent Plastic Film Mulch (투명(透明) 프라스틱 필름 피복(被覆)에 따른 참깨의 실증발산량(實蒸發散量) 변화(變化))

  • Oh, Dong-Shin;Kwon, Yong-Woong;Im, Jung-Nam;Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.34-43
    • /
    • 1996
  • Determining the actual evapotranspiration(ETa) of a crop, and appropriate water management of the crop based on the ETa are very important For increasing the yield. The present study aimed at determining ETa and crop coefficient of sesame growing under different climatic conditions with the transparent thin polyethylene film mulch(0.03 mm thick) and without this mulch. Bottomless cylindrical lysimeters(105cm in diameter, 120cm in height, protruded 20 cm above the soil surface) were installed on the field of sandy loam "Bonyang series" soil with a moderate drainage. The determination of ETa was performed by measuring each component of a model equation, $ETa=(R+I)-\{Ro+(D1+D2)\}+C{\pm}{\Delta}S$. Sesame, cv. "Ansan" was sown in two rows with the spacing of $50{\times}15cm$ on May 10 in 1991 and 1992. The mulching covers 80% of the soil surface. Sesame consumed the water of 139.0 mm(1.53 mm/day) and 171.2 mm(1.59 mm/day) in ETa without the film mulch, but that of 132.6 mm(1.46 mm/day) and 199.8 mm(1.85 mm/day) with its mulching through both years of 1991 and 1992, respectively. The ETa's accounted for 52 and 69% of the potential evapotranspiration(ETp) in the mulched crop, and 54 and 59% of ETp in the non-mulched crop 1991 through 1992, respectively. Its ETa's were much more and their gap between the mulching and non-mulching treatment was larger in 1992 than in 1991 as a result of the better climatic condition of 1992.

  • PDF

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF

Homogeneity of Climate Aridity Index Trends Using Mann-Kendall Trend Test (Mann-Kendall 추세분석을 이용한 건조지수 추세의 동질성)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.7
    • /
    • pp.643-656
    • /
    • 2014
  • The homogeneity analysis of temporal (monthly, seasonal and annual) climate aridity index trend was accomplished for 43 climate measurement stations in South Korea. Furthermore, 43 stations were grouped into 9 different regions and the temporal and regional homogeneity of climate aridity index trends in each region and entire 9 regions were analyzed. For analysis, monthly, seasonal and annual climate aridity indexes of 43 study stations were estimated using precipitation and potential evapotranspiration calculated from FAO Penman-Monteith equation. The Mann-Kendall statistical test for significant trend was accomplished using the estimated climate aridity indexes and the results of trend test (Z scores) were used to analyze the temporal and regional homogeneity of climate aridity index trends. The study results showed the temporal and regional homogeneity of climate aridity index trends for individual and entire 9 regions. However, the homogeneity and the extent of aridity index trend showed different patterns temporally and regionally.

Effects of Climate Change on the Streamflow for the Daechung Dam Watershed (기후변화에 따른 대청댐 유역의 유출 영향 분석)

  • Kim, Ung-Tae;Lee, Dong-Ryul;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.305-314
    • /
    • 2004
  • Climate change mainly due to the increase of green house gases cause different patterns of water cycle within the basin. However, it is common that current planning and management practices do not consider the effect of the climate change. So, this study evaluated the effect of climate change on the water circulation within the watershed. This study used several GCM simulations for the double $CO_2$condition for the generation of temperature and rainfall series using the Markov chain. Daily runoff series for 100 years were generated using a rainfall-runoff model. As results. annual temperature increase by +3.2 ∼+4.6$^{\circ}C$, annual precipitation change -7 ∼ +8 %, annual runoff change -14 ∼ +7 %, and potential evapotranspiration amount change +3 ∼+4 % for the change of 1 $^{\circ}C$ are found to be expected depending on GCM simulations. Even though the simulation results are very dependent on the GCM predictions considered, overall variability of runoff is expected to become higher than the current state.

Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed (충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석)

  • Kim, Nam-Won;Shin, Ah-Hyun;Kim, Chul-Gyum
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

An Analysis of the Drought Period Using Non-Linear Water Balance Model and Palmer Drought Severity1 Index (비선형 물수지모형과 팔머가뭄심도지수를 이용한 가뭄지속기간 분석)

  • Lee, Jae-Su
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.533-542
    • /
    • 2001
  • In order to establish drought policy, the estimation of drought period for each drought situation should be preceded. Non-linear Water Balance Model(NWBM) and palmer Drought Severity Index (PDSI) can be used for analysis of drought period. As a water balance method considering moisture transfer between land surface and atmosphere, NWBM can be used to estimate transition time between dry and wet period induced by stochastic fluctuations. PDSI is also water balance method to show drought severity comparing actual precipitation with climatically appropriate precipitation based on precipitation and potential evapotranspiration. In this study, the drought periods are estimated using NWBM and PDSI for the Han River Basin. The drought periods according to the soil moisture estimated by NWBS and the drought periods according to drought severity index estimated by PDSI show similar trend. The estimated drought period from extreme drought to wet condition for the Han River Basin is about 3years.

  • PDF

Seasonal Variations of the Evaporation in Korea (증발량의 시공적 변화)

  • 이광호;김문일
    • Water for future
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1985
  • The distributions of the copper plated(small) pan evaporation in both space and time are analysed with the data observed, and the lake and the potential evaportranspiration are estimated from the climatological data. These value are compared with each other and to the precipitation for deducing the seasonal amounts and variations of water budgets in the selected basins and regions. The meteorological factor which is closely associated with the small pan evaporation are hardly recognizable when they are used as the monthly values. The relationships among the small pan, the Class A pan and the lake evaporation are well correlated with each other with correlation coefficient of above 0.90, so it may be possible to derve other evaporations from knowing one evaporation. The ratio of the Class A pan and the lake evaporation to the small pan evaportion in annual are about 73% and 55%, repectively, except the mountaineous area where the values are about 10% less than those. The evapotranspiration reach about 40∼60% of the annumal precipitation, but in May and October two values are nearly same. The frequencies of the monthly evaportion in class intervals in the regions are also provided.

  • PDF