• Title/Summary/Keyword: potential error

Search Result 729, Processing Time 0.037 seconds

Discrimination of Geographical Origin for Astragalus Root (Astragalus membranaceus) by Capillary Electrophoresis and Near-Infrared Spectroscopy (Capillary electrophoresis 및 근적외선분광분석기를 이용한 황기의 원산지 판별)

  • Kim, Eun-Young;Kim, Jung-Hyun;Lee, Nam-Yun;Kim, Soo-Jeong;Rhyu, Mee-Ra
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.818-824
    • /
    • 2003
  • Capillary electrophoresis (CE) and near-infrared spectroscopy (NIRS) were performed to discriminate astragalus roots (Astragalus membranaceus) according to geographical origin (domestic or foreign). Two-hundred-and-four astragalus roots were extracted with 30% methanol in 0.1 M phosphate buffer (pH 2.5) and separated in a uncoated fused-silica $(50\;{\mu}m{\times}27\;cm)$ capillary. Conditions for optimal analysis included: temperature $-45^{\circ}C$, voltage -14 kV, and pressure injection time -8 sec. The optimal separation buffer was 0.1 M phosphate buffer (pH 2.5) containing 40 mM hexane sulfonic acid with 20% 2-methoxy ethanol. Raw NIR spectra were obtained using NIRS, and modified partial least square regression was used to develop the prediction model. The correlation coefficient and standard error of prediction were 0.915 and 14.3%, respectively. Under the optimal conditions established for CE and NIRS, the geographical origins of the astragalus roots were correctly identified in 80 and 97%, respectively. Astragalus roots that were not discriminated by NIRS were correctly discriminated by CE. Hence, CE and NIRS are potential methods for discriminating the geographical origins of astragalus roots that complement one another.

Statistical Errors in Papers Published in the Journal of the Korean Society for Therapeutic Radiology and Oncology (대한방사선종양학회지 게재 논문의 통계적 오류 현황)

  • Park, Hee-Chul;Choi, Doo-Ho;Ahn, Song-Vogue;Kang, Jin-Oh;Kim, Eun-Seog;Park, Won;Ahn, Seung-Do;Yang, Dae-Sik;Yun, Hyong-Geun;Chung, Eun-Ji;Chie, Eui-Kyu;Pyo, Hong-Ryull;Hong, Se-Mie
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • Purpose: To improve the quality of the statistical analysis of papers published in the Journal of the Korean Society for Therapeutic Radiology and Oncology (JKOSTRO) by evaluating commonly encountered errors. Materials and Methods: Papers published in the JKOSTRO from January 2006 to December 2007 were reviewed for methodological and statistical validity using a modified version of Ahn's checklist. A statistician reviewed individual papers and evaluated the list items in the checklist for each paper. To avoid the potential assessment error by the statistician who lacks expertise in the field of radiation oncology; the editorial board of the JKOSTRO reviewed each checklist for individual articles. A frequency analysis of the list items was performed using SAS (version 9.0, SAS Institute, NC, USA) software. Results: A total of 73 papers including 5 case reports and 68 original articles were reviewed. Inferential statistics was used in 46 papers. The most commonly adopted statistical methodology was a survival analysis (58.7%). Only 19% of papers were free of statistical errors. Errors of omission were encountered in 34 (50.0%) papers. Errors of commission were encountered in 35 (51.5%) papers. Twenty-one papers (30.9%) had both errors of omission and commission. Conclusion: A variety of statistical errors were encountered in papers published in the JKOSTRO. The current study suggests that a more thorough review of the statistical analysis is needed for manuscripts submitted in the JKOSTRO.

Optimal Selection of Classifier Ensemble Using Genetic Algorithms (유전자 알고리즘을 이용한 분류자 앙상블의 최적 선택)

  • Kim, Myung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.99-112
    • /
    • 2010
  • Ensemble learning is a method for improving the performance of classification and prediction algorithms. It is a method for finding a highly accurateclassifier on the training set by constructing and combining an ensemble of weak classifiers, each of which needs only to be moderately accurate on the training set. Ensemble learning has received considerable attention from machine learning and artificial intelligence fields because of its remarkable performance improvement and flexible integration with the traditional learning algorithms such as decision tree (DT), neural networks (NN), and SVM, etc. In those researches, all of DT ensemble studies have demonstrated impressive improvements in the generalization behavior of DT, while NN and SVM ensemble studies have not shown remarkable performance as shown in DT ensembles. Recently, several works have reported that the performance of ensemble can be degraded where multiple classifiers of an ensemble are highly correlated with, and thereby result in multicollinearity problem, which leads to performance degradation of the ensemble. They have also proposed the differentiated learning strategies to cope with performance degradation problem. Hansen and Salamon (1990) insisted that it is necessary and sufficient for the performance enhancement of an ensemble that the ensemble should contain diverse classifiers. Breiman (1996) explored that ensemble learning can increase the performance of unstable learning algorithms, but does not show remarkable performance improvement on stable learning algorithms. Unstable learning algorithms such as decision tree learners are sensitive to the change of the training data, and thus small changes in the training data can yield large changes in the generated classifiers. Therefore, ensemble with unstable learning algorithms can guarantee some diversity among the classifiers. To the contrary, stable learning algorithms such as NN and SVM generate similar classifiers in spite of small changes of the training data, and thus the correlation among the resulting classifiers is very high. This high correlation results in multicollinearity problem, which leads to performance degradation of the ensemble. Kim,s work (2009) showedthe performance comparison in bankruptcy prediction on Korea firms using tradition prediction algorithms such as NN, DT, and SVM. It reports that stable learning algorithms such as NN and SVM have higher predictability than the unstable DT. Meanwhile, with respect to their ensemble learning, DT ensemble shows the more improved performance than NN and SVM ensemble. Further analysis with variance inflation factor (VIF) analysis empirically proves that performance degradation of ensemble is due to multicollinearity problem. It also proposes that optimization of ensemble is needed to cope with such a problem. This paper proposes a hybrid system for coverage optimization of NN ensemble (CO-NN) in order to improve the performance of NN ensemble. Coverage optimization is a technique of choosing a sub-ensemble from an original ensemble to guarantee the diversity of classifiers in coverage optimization process. CO-NN uses GA which has been widely used for various optimization problems to deal with the coverage optimization problem. The GA chromosomes for the coverage optimization are encoded into binary strings, each bit of which indicates individual classifier. The fitness function is defined as maximization of error reduction and a constraint of variance inflation factor (VIF), which is one of the generally used methods to measure multicollinearity, is added to insure the diversity of classifiers by removing high correlation among the classifiers. We use Microsoft Excel and the GAs software package called Evolver. Experiments on company failure prediction have shown that CO-NN is effectively applied in the stable performance enhancement of NNensembles through the choice of classifiers by considering the correlations of the ensemble. The classifiers which have the potential multicollinearity problem are removed by the coverage optimization process of CO-NN and thereby CO-NN has shown higher performance than a single NN classifier and NN ensemble at 1% significance level, and DT ensemble at 5% significance level. However, there remain further research issues. First, decision optimization process to find optimal combination function should be considered in further research. Secondly, various learning strategies to deal with data noise should be introduced in more advanced further researches in the future.

Real-time Nutrient Monitoring of Hydroponic Solutions Using an Ion-selective Electrode-based Embedded System (ISE 기반의 임베디드 시스템을 이용한 실시간 수경재배 양액 모니터링)

  • Han, Hee-Jo;Kim, Hak-Jin;Jung, Dae-Hyun;Cho, Woo-Jae;Cho, Yeong-Yeol;Lee, Gong-In
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.141-152
    • /
    • 2020
  • The rapid on-site measurement of hydroponic nutrients allows for the more efficient use of crop fertilizers. This paper reports on the development of an embedded on-site system consisting of multiple ion-selective electrodes (ISEs) for the real-time measurement of the concentrations of macronutrients in hydroponic solutions. The system included a combination of PVC ISEs for the detection of NO3, K, and Ca ions, a cobalt-electrode for the detection of H2PO4, a double-junction reference electrode, a solution container, and a sampling system consisting of pumps and valves. An Arduino Due board was used to collect data and to control the volume of the sample. Prior to the measurement of each sample, a two-point normalization method was employed to adjust the sensitivity followed by an offset to minimize potential drift that might occur during continuous measurement. The predictive capabilities of the NO3 and K ISEs based on PVC membranes were satisfactory, producing results that were in close agreement with the results of standard analyzers (R2 = 0.99). Though the Ca ISE fabricated with Ca ionophore II underestimated the Ca concentration by an average of 55%, the strong linear relationship (R2 > 0.84) makes it possible for the embedded system to be used in hydroponic NO3, K, and Ca sensing. The cobalt-rod-based phosphate electrodes exhibited a relatively high error of 24.7±9.26% in the phosphate concentration range of 45 to 155 mg/L compared to standard methods due to inconsistent signal readings between replicates, illustrating the need for further research on the signal conditioning of cobalt electrodes to improve their predictive ability in hydroponic P sensing.

2-D/3-D Seismic Data Acquisition and Quality Control for Gas Hydrate Exploration in the Ulleung Basin (울릉분지 가스하이드레이트 2/3차원 탄성파 탐사자료 취득 및 품질관리)

  • Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun;Yoo, Dong-Geun;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • To identify the potential area of gas hydrate in the Ulleung Basin, 2-D and 3-D seismic surveys using R/V Tamhae II were conducted in 2005 and 2006. Seismic survey equipment consisted of navigation system, recording system, streamer cable and air-gun source. For reliable velocity analysis in a deep sea area where water depths are mostly greater than 1,000 m and the target depth is up to about 500 msec interval below the seafloor, 3-km-long streamer and 1,035 $in^3$ tuned air-gun array were used. During the survey, a suite of quality control operations including source signature analysis, 2-D brute stack, RMS noise analysis and FK analysis were performed. The source signature was calculated to verify its conformity to quality specification and the gun dropout test was carried out to examine signature changes due to a single air gun's failure. From the online quality analysis, we could conclude that the overall data quality was very good even though some seismic data were affected by swell noise, parity error, spike noise and current rip noise. Especially, by checking the result of data quality enhancement using FK filtering and missing trace restoration technique for the 3-D seismic data inevitably contaminated with current rip noises, the acquired data were accepted and the field survey could be conducted continuously. Even in survey areas where the acquired data would be unsuitable for quality specification, the marine seismic survey efficiency could be improved by showing the possibility of noise suppression through onboard data processing.

A Study on a Quantified Structure Simulation Technique for Product Design Based on Augmented Reality (제품 디자인을 위한 증강현실 기반 정량구조 시뮬레이션 기법에 대한 연구)

  • Lee, Woo-Hun
    • Archives of design research
    • /
    • v.18 no.3 s.61
    • /
    • pp.85-94
    • /
    • 2005
  • Most of product designers use 3D CAD system as a inevitable design tool nowadays and many new products are developed through a concurrent engineering process. However, it is very difficult for novice designers to get the sense of reality from modeling objects shown in the computer screens. Such a intangibility problem comes from the lack of haptic interactions and contextual information about the real space because designers tend to do 3D modeling works only in a virtual space of 3D CAD system. To address this problem, this research investigate the possibility of a interactive quantified structure simulation for product design using AR(augmented reality) which can register a 3D CAD modeling object on the real space. We built a quantified structure simulation system based on AR and conducted a series of experiments to measure how accurately human perceive and adjust the size of virtual objects under varied experimental conditions in the AR environment. The experiment participants adjusted a virtual cube to a reference real cube within 1.3% relative error(5.3% relative StDev). The results gave the strong evidence that the participants can perceive the size of a virtual object very accurately. Furthermore, we found that it is easier to perceive the size of a virtual object in the condition of presenting plenty of real reference objects than few reference objects, and using LCD panel than HMD. We tried to apply the simulation system to identify preference characteristics for the appearance design of a home-service robot as a case study which explores the potential application of the system. There were significant variances in participants' preferred characteristics about robot appearance and that was supposed to come from the lack of typicality of robot image. Then, several characteristic groups were segmented by duster analysis. On the other hand, it was interesting finding that participants have significantly different preference characteristics between robot with arm and armless robot and there was a very strong correlation between the height of robot and arm length as a human body.

  • PDF

Analysis of Ice Velocity Variations of Nansen Ice Shelf, East Antarctica, from 2000 to 2017 Using Landsat Multispectral Image Matching (Landsat 다중분광 영상정합을 이용한 동남극 난센 빙붕의 2000-2017년 흐름속도 변화 분석)

  • Han, Hyangsun;Lee, Choon-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1165-1178
    • /
    • 2018
  • Collapse of an Antarctic ice shelf and its flow velocity changes has the potential to reduce the restraining stress to the seaward flow of the Antarctic Ice Sheet, which can cause sea level rising. In this study, variations in ice velocity from 2000 to 2017 for the Nansen Ice Shelf in East Antarctica that experienced a large-scale collapse in April 2016 were analyzed using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) images. To extract ice velocity, image matching based on orientation correlation was applied to the image pairs of blue, green, red, near-infrared, panchromatic, and the first principal component image of the Landsat multispectral data, from which the results were combined. The Landsat multispectral image matching produced reliable ice velocities for at least 14% wider area on the Nansen Ice Shelf than for the case of using single band (i.e., panchromatic) image matching. The ice velocities derived from the Landsat multispectral image matching have the error of $2.1m\;a^{-1}$ compared to the in situ Global Positioning System (GPS) observation data. The region adjacent to the Drygalski Ice Tongue showed the fastest increase in ice velocity between 2000 and 2017. The ice velocity along the central flow line of the Nansen Ice Shelf was stable before 2010 (${\sim}228m\;a^{-1}$). In 2011-2012, when a rift began to develop near the ice front, the ice flow was accelerated (${\sim}255m\;a^{-1}$) but the velocity was only about 11% faster than 2010. Since 2014, the massive rift had been fully developed, and the ice velocity of the upper region of the rift slightly decreased (${\sim}225m\;a^{-1}$) and stabilized. This means that the development of the rift and the resulting collapse of the ice front had little effect on the ice velocity of the Nansen Ice Shelf.

A Case Study: Improvement of Wind Risk Prediction by Reclassifying the Detection Results (풍해 예측 결과 재분류를 통한 위험 감지확률의 개선 연구)

  • Kim, Soo-ock;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.149-155
    • /
    • 2021
  • Early warning systems for weather risk management in the agricultural sector have been developed to predict potential wind damage to crops. These systems take into account the daily maximum wind speed to determine the critical wind speed that causes fruit drops and provide the weather risk information to farmers. In an effort to increase the accuracy of wind risk predictions, an artificial neural network for binary classification was implemented. In the present study, the daily wind speed and other weather data, which were measured at weather stations at sites of interest in Jeollabuk-do and Jeollanam-do as well as Gyeongsangbuk- do and part of Gyeongsangnam- do provinces in 2019, were used for training the neural network. These weather stations include 210 synoptic and automated weather stations operated by the Korean Meteorological Administration (KMA). The wind speed data collected at the same locations between January 1 and December 12, 2020 were used to validate the neural network model. The data collected from December 13, 2020 to February 18, 2021 were used to evaluate the wind risk prediction performance before and after the use of the artificial neural network. The critical wind speed of damage risk was determined to be 11 m/s, which is the wind speed reported to cause fruit drops and damages. Furthermore, the maximum wind speeds were expressed using Weibull distribution probability density function for warning of wind damage. It was found that the accuracy of wind damage risk prediction was improved from 65.36% to 93.62% after re-classification using the artificial neural network. Nevertheless, the error rate also increased from 13.46% to 37.64%, as well. It is likely that the machine learning approach used in the present study would benefit case studies where no prediction by risk warning systems becomes a relatively serious issue.

Characterization of compounds and quantitative analysis of oleuropein in commercial olive leaf extracts (상업용 올리브 잎 추출물의 화합물 특성과 이들의 oleuropein 함량 비교분석)

  • Park, Mi Hyeon;Kim, Doo-Young;Arbianto, Alfan Danny;Kim, Jung-Hee;Lee, Seong Mi;Ryu, Hyung Won;Oh, Sei-Ryang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Olive (Olea europaea L.) leaves, a raw material for health functional foods and cosmetics have abundant polyphenols including oleuropein (major bioactive compound) with various biological activities: antioxidant, antibacterial, antiviral, anticancer activity, and inhibit platelet activation. Oleuropein has been reported as skin protectant, antioxidant, anti-ageing, anti-cancer, anti-inflammation, anti-atherogenic, anti-viral, and anti-microbial activity. Despite oleuropein is the important compound in olive leaves, there is still no quantitative approach to reveal oleuropein content in commercial products. Therefore, a validated method of analysis has to develop for oleuropein. In this study, the components and oleuropein content in 10 types of products were analyzed using a developed method with ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry, charge of aerosol detector, and photodiode array. The total of 18 compounds including iridoids (1, 3, 4, 14, and 16-18), coumarin (2), phenylethanoids (5, 9, and 11), flavonoids (6-8, 10, 12, and 13), lignan (15), were tentatively identified in the leaves extract based high resolution mass spectrometry data, and the content of oleuropein in each product was almost identical between two detection methods. The oleuropein in three commercial product (A, G, H) was contained more over the suggested content, and it of five products (B, E, H, I, J) were analyzed within 5-10% error range. However, the two products (C, D) were found far lower than suggested contents. This study provides that analytical results of oleuropein could be a potential information for the quality control of leaf extract for a manufactured functional food.

Study on Bandwidth and Characteristic Impedance of CWP3DCS (Coplanar Waveguide Employing Periodic 3D Coupling Structures) for the Development of a Radio Communication FISoC (Fully-integrated System on Chip) Semiconductor Device (완전집적형 무선통신 SoC 반도체 소자 개발을 위한 주기적인 3차원 결합구조를 가지는 코프레너 선로에 대한 대역폭 및 임피던스 특성연구)

  • Yun, Young
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.179-190
    • /
    • 2022
  • In this study, we investigated the characteristic impedance and bandwidth of CPW3DCS (coplanar waveguide employing periodic 3D coupling structures), and examined its potential for the development of a marine radio communication FISoC (fully-integrated system on chip) semiconductor device. To extract bandwidth and characteristic impedance of the CPW3DC, we induced a measurement-based equation reflecting measured insertion loss, and compared the measured results of the propagation constant β and characteristic impedance with the measured ones. According to the results of the comparison, the calculated results show a good agreement with the measured ones. Concretely, the propagation constant β and characteristic impedance exhibited an maximum error of 3.9% and 6.4%, respectively. According to the results of this study, in a range of LT = 30 ~ 150 ㎛ for the length of periodic structures, the CPW3DC exhibited a passband characteristic of 121 GHz, and a very small dependency of characteristic impedance on frequency. We could realize a low impedance transmission line with a characteristic impedance lower than 20 Ω by using CPW3DCS with a line width of 20 ㎛, which was highly reduced, compared with a 3mm line width of conventional transmission line with the same impedance. The characteristic impedance was easily adjusted by changing LT. The above results indicate that the CPW3DC can be usefully used for the development of a wireless communication FISoC (fully-integrated system on chip) semiconductor device. This is the first report of a study on the bandwidth of the CPW3DC.